Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
TencentARC
GitHub Repository: TencentARC/GFPGAN
Path: blob/master/tests/test_stylegan2_clean_arch.py
884 views
1
import torch
2
3
from gfpgan.archs.stylegan2_clean_arch import StyleGAN2GeneratorClean
4
5
6
def test_stylegan2generatorclean():
7
"""Test arch: StyleGAN2GeneratorClean."""
8
9
# model init and forward (gpu)
10
if torch.cuda.is_available():
11
net = StyleGAN2GeneratorClean(
12
out_size=32, num_style_feat=512, num_mlp=8, channel_multiplier=1, narrow=0.5).cuda().eval()
13
style = torch.rand((1, 512), dtype=torch.float32).cuda()
14
output = net([style], input_is_latent=False)
15
assert output[0].shape == (1, 3, 32, 32)
16
assert output[1] is None
17
18
# -------------------- with return_latents ----------------------- #
19
output = net([style], input_is_latent=True, return_latents=True)
20
assert output[0].shape == (1, 3, 32, 32)
21
assert len(output[1]) == 1
22
# check latent
23
assert output[1][0].shape == (8, 512)
24
25
# -------------------- with randomize_noise = False ----------------------- #
26
output = net([style], randomize_noise=False)
27
assert output[0].shape == (1, 3, 32, 32)
28
assert output[1] is None
29
30
# -------------------- with truncation = 0.5 and mixing----------------------- #
31
output = net([style, style], truncation=0.5, truncation_latent=style)
32
assert output[0].shape == (1, 3, 32, 32)
33
assert output[1] is None
34
35
# ------------------ test make_noise ----------------------- #
36
out = net.make_noise()
37
assert len(out) == 7
38
assert out[0].shape == (1, 1, 4, 4)
39
assert out[1].shape == (1, 1, 8, 8)
40
assert out[2].shape == (1, 1, 8, 8)
41
assert out[3].shape == (1, 1, 16, 16)
42
assert out[4].shape == (1, 1, 16, 16)
43
assert out[5].shape == (1, 1, 32, 32)
44
assert out[6].shape == (1, 1, 32, 32)
45
46
# ------------------ test get_latent ----------------------- #
47
out = net.get_latent(style)
48
assert out.shape == (1, 512)
49
50
# ------------------ test mean_latent ----------------------- #
51
out = net.mean_latent(2)
52
assert out.shape == (1, 512)
53
54