from __future__ import annotations
import copy
import getpass
import inspect
import json
import os
import pkgutil
import random
import sys
import time
import warnings
import webbrowser
from types import ModuleType
from typing import (
TYPE_CHECKING,
Any,
AnyStr,
Callable,
Dict,
Iterator,
List,
Optional,
Set,
Tuple,
)
import anyio
import requests
from anyio import CapacityLimiter
from gradio import (
components,
encryptor,
external,
networking,
queue,
routes,
strings,
utils,
)
from gradio.context import Context
from gradio.deprecation import check_deprecated_parameters
from gradio.documentation import (
document,
document_component_api,
set_documentation_group,
)
from gradio.exceptions import DuplicateBlockError, InvalidApiName
from gradio.utils import (
check_function_inputs_match,
component_or_layout_class,
delete_none,
get_cancel_function,
get_continuous_fn,
)
set_documentation_group("blocks")
if TYPE_CHECKING:
import comet_ml
import mlflow
import wandb
from fastapi.applications import FastAPI
from gradio.components import Component, IOComponent
class Block:
def __init__(
self,
*,
render: bool = True,
elem_id: str | None = None,
visible: bool = True,
root_url: str | None = None,
**kwargs,
):
self._id = Context.id
Context.id += 1
self.visible = visible
self.elem_id = elem_id
self.root_url = root_url
self._style = {}
if render:
self.render()
check_deprecated_parameters(self.__class__.__name__, **kwargs)
def render(self):
"""
Adds self into appropriate BlockContext
"""
if Context.root_block is not None and self._id in Context.root_block.blocks:
raise DuplicateBlockError(
f"A block with id: {self._id} has already been rendered in the current Blocks."
)
if Context.block is not None:
Context.block.add(self)
if Context.root_block is not None:
Context.root_block.blocks[self._id] = self
if hasattr(self, "temp_dir"):
Context.root_block.temp_dirs.add(self.temp_dir)
return self
def unrender(self):
"""
Removes self from BlockContext if it has been rendered (otherwise does nothing).
Removes self from the layout and collection of blocks, but does not delete any event triggers.
"""
if Context.block is not None:
try:
Context.block.children.remove(self)
except ValueError:
pass
if Context.root_block is not None:
try:
del Context.root_block.blocks[self._id]
except KeyError:
pass
return self
def get_block_name(self) -> str:
"""
Gets block's class name.
If it is template component it gets the parent's class name.
@return: class name
"""
return (
self.__class__.__base__.__name__.lower()
if hasattr(self, "is_template")
else self.__class__.__name__.lower()
)
def set_event_trigger(
self,
event_name: str,
fn: Callable | None,
inputs: Component | List[Component] | Set[Component] | None,
outputs: Component | List[Component] | None,
preprocess: bool = True,
postprocess: bool = True,
scroll_to_output: bool = False,
show_progress: bool = True,
api_name: AnyStr | None = None,
js: str | None = None,
no_target: bool = False,
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
cancels: List[int] | None = None,
every: float | None = None,
) -> Dict[str, Any]:
"""
Adds an event to the component's dependencies.
Parameters:
event_name: event name
fn: Callable function
inputs: input list
outputs: output list
preprocess: whether to run the preprocess methods of components
postprocess: whether to run the postprocess methods of components
scroll_to_output: whether to scroll to output of dependency on trigger
show_progress: whether to show progress animation while running.
api_name: Defining this parameter exposes the endpoint in the api docs
js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components
no_target: if True, sets "targets" to [], used for Blocks "load" event
batch: whether this function takes in a batch of inputs
max_batch_size: the maximum batch size to send to the function
cancels: a list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
Returns: None
"""
if isinstance(inputs, set):
inputs_as_dict = True
inputs = sorted(inputs, key=lambda x: x._id)
else:
inputs_as_dict = False
if inputs is None:
inputs = []
elif not isinstance(inputs, list):
inputs = [inputs]
if isinstance(outputs, set):
outputs = sorted(outputs, key=lambda x: x._id)
else:
if outputs is None:
outputs = []
elif not isinstance(outputs, list):
outputs = [outputs]
if fn is not None and not cancels:
check_function_inputs_match(fn, inputs, inputs_as_dict)
if Context.root_block is None:
raise AttributeError(
f"{event_name}() and other events can only be called within a Blocks context."
)
if every is not None and every <= 0:
raise ValueError("Parameter every must be positive or None")
if every and batch:
raise ValueError(
f"Cannot run {event_name} event in a batch and every {every} seconds. "
"Either batch is True or every is non-zero but not both."
)
if every:
fn = get_continuous_fn(fn, every)
Context.root_block.fns.append(
BlockFunction(fn, inputs, outputs, preprocess, postprocess, inputs_as_dict)
)
if api_name is not None:
api_name_ = utils.append_unique_suffix(
api_name, [dep["api_name"] for dep in Context.root_block.dependencies]
)
if not (api_name == api_name_):
warnings.warn(
"api_name {} already exists, using {}".format(api_name, api_name_)
)
api_name = api_name_
dependency = {
"targets": [self._id] if not no_target else [],
"trigger": event_name,
"inputs": [block._id for block in inputs],
"outputs": [block._id for block in outputs],
"backend_fn": fn is not None,
"js": js,
"queue": False if fn is None else queue,
"api_name": api_name,
"scroll_to_output": scroll_to_output,
"show_progress": show_progress,
"every": every,
"batch": batch,
"max_batch_size": max_batch_size,
"cancels": cancels or [],
}
if api_name is not None:
dependency["documentation"] = [
[
document_component_api(component.__class__, "input")
for component in inputs
],
[
document_component_api(component.__class__, "output")
for component in outputs
],
]
Context.root_block.dependencies.append(dependency)
return dependency
def get_config(self):
return {
"visible": self.visible,
"elem_id": self.elem_id,
"style": self._style,
"root_url": self.root_url,
}
@classmethod
def get_specific_update(cls, generic_update):
del generic_update["__type__"]
generic_update = cls.update(**generic_update)
return generic_update
class BlockContext(Block):
def __init__(
self,
visible: bool = True,
render: bool = True,
**kwargs,
):
"""
Parameters:
visible: If False, this will be hidden but included in the Blocks config file (its visibility can later be updated).
render: If False, this will not be included in the Blocks config file at all.
"""
self.children = []
super().__init__(visible=visible, render=render, **kwargs)
def __enter__(self):
self.parent = Context.block
Context.block = self
return self
def add(self, child):
child.parent = self
self.children.append(child)
def fill_expected_parents(self):
children = []
pseudo_parent = None
for child in self.children:
expected_parent = getattr(child.__class__, "expected_parent", False)
if not expected_parent or isinstance(self, expected_parent):
pseudo_parent = None
children.append(child)
else:
if pseudo_parent is not None and isinstance(
pseudo_parent, expected_parent
):
pseudo_parent.children.append(child)
else:
pseudo_parent = expected_parent(render=False)
children.append(pseudo_parent)
pseudo_parent.children = [child]
Context.root_block.blocks[pseudo_parent._id] = pseudo_parent
child.parent = pseudo_parent
self.children = children
def __exit__(self, *args):
if getattr(self, "allow_expected_parents", True):
self.fill_expected_parents()
Context.block = self.parent
def postprocess(self, y):
"""
Any postprocessing needed to be performed on a block context.
"""
return y
class BlockFunction:
def __init__(
self,
fn: Optional[Callable],
inputs: List[Component],
outputs: List[Component],
preprocess: bool,
postprocess: bool,
inputs_as_dict: bool,
):
self.fn = fn
self.inputs = inputs
self.outputs = outputs
self.preprocess = preprocess
self.postprocess = postprocess
self.total_runtime = 0
self.total_runs = 0
self.inputs_as_dict = inputs_as_dict
def __str__(self):
return str(
{
"fn": getattr(self.fn, "__name__", "fn")
if self.fn is not None
else None,
"preprocess": self.preprocess,
"postprocess": self.postprocess,
}
)
def __repr__(self):
return str(self)
class class_or_instancemethod(classmethod):
def __get__(self, instance, type_):
descr_get = super().__get__ if instance is None else self.__func__.__get__
return descr_get(instance, type_)
@document()
def update(**kwargs) -> dict:
"""
Updates component properties.
This is a shorthand for using the update method on a component.
For example, rather than using gr.Number.update(...) you can just use gr.update(...).
Note that your editor's autocompletion will suggest proper parameters
if you use the update method on the component.
Demos: blocks_essay, blocks_update, blocks_essay_update
Parameters:
kwargs: Key-word arguments used to update the component's properties.
Example:
# Blocks Example
import gradio as gr
with gr.Blocks() as demo:
radio = gr.Radio([1, 2, 4], label="Set the value of the number")
number = gr.Number(value=2, interactive=True)
radio.change(fn=lambda value: gr.update(value=value), inputs=radio, outputs=number)
demo.launch()
# Interface example
import gradio as gr
def change_textbox(choice):
if choice == "short":
return gr.Textbox.update(lines=2, visible=True)
elif choice == "long":
return gr.Textbox.update(lines=8, visible=True)
else:
return gr.Textbox.update(visible=False)
gr.Interface(
change_textbox,
gr.Radio(
["short", "long", "none"], label="What kind of essay would you like to write?"
),
gr.Textbox(lines=2),
live=True,
).launch()
"""
kwargs["__type__"] = "generic_update"
return kwargs
def skip() -> dict:
return update()
def postprocess_update_dict(block: Block, update_dict: Dict, postprocess: bool = True):
"""
Converts a dictionary of updates into a format that can be sent to the frontend.
E.g. {"__type__": "generic_update", "value": "2", "interactive": False}
Into -> {"__type__": "update", "value": 2.0, "mode": "static"}
Parameters:
block: The Block that is being updated with this update dictionary.
update_dict: The original update dictionary
postprocess: Whether to postprocess the "value" key of the update dictionary.
"""
prediction_value = block.get_specific_update(update_dict)
if prediction_value.get("value") is components._Keywords.NO_VALUE:
prediction_value.pop("value")
prediction_value = delete_none(prediction_value, skip_value=True)
if "value" in prediction_value and postprocess:
prediction_value["value"] = block.postprocess(prediction_value["value"])
return prediction_value
def convert_component_dict_to_list(outputs_ids: List[int], predictions: Dict) -> List:
"""
Converts a dictionary of component updates into a list of updates in the order of
the outputs_ids and including every output component.
E.g. {"textbox": "hello", "number": {"__type__": "generic_update", "value": "2"}}
Into -> ["hello", {"__type__": "generic_update"}, {"__type__": "generic_update", "value": "2"}]
"""
keys_are_blocks = [isinstance(key, Block) for key in predictions.keys()]
if all(keys_are_blocks):
reordered_predictions = [skip() for _ in outputs_ids]
for component, value in predictions.items():
if component._id not in outputs_ids:
raise ValueError(
f"Returned component {component} not specified as output of function."
)
output_index = outputs_ids.index(component._id)
reordered_predictions[output_index] = value
predictions = utils.resolve_singleton(reordered_predictions)
elif any(keys_are_blocks):
raise ValueError(
"Returned dictionary included some keys as Components. Either all keys must be Components to assign Component values, or return a List of values to assign output values in order."
)
return predictions
@document("load")
class Blocks(BlockContext):
"""
Blocks is Gradio's low-level API that allows you to create more custom web
applications and demos than Interfaces (yet still entirely in Python).
Compared to the Interface class, Blocks offers more flexibility and control over:
(1) the layout of components (2) the events that
trigger the execution of functions (3) data flows (e.g. inputs can trigger outputs,
which can trigger the next level of outputs). Blocks also offers ways to group
together related demos such as with tabs.
The basic usage of Blocks is as follows: create a Blocks object, then use it as a
context (with the "with" statement), and then define layouts, components, or events
within the Blocks context. Finally, call the launch() method to launch the demo.
Example:
import gradio as gr
def update(name):
return f"Welcome to Gradio, {name}!"
with gr.Blocks() as demo:
gr.Markdown("Start typing below and then click **Run** to see the output.")
with gr.Row():
inp = gr.Textbox(placeholder="What is your name?")
out = gr.Textbox()
btn = gr.Button("Run")
btn.click(fn=update, inputs=inp, outputs=out)
demo.launch()
Demos: blocks_hello, blocks_flipper, blocks_speech_text_sentiment, generate_english_german, sound_alert
Guides: blocks_and_event_listeners, controlling_layout, state_in_blocks, custom_CSS_and_JS, custom_interpretations_with_blocks, using_blocks_like_functions
"""
def __init__(
self,
theme: str = "default",
analytics_enabled: Optional[bool] = None,
mode: str = "blocks",
title: str = "Gradio",
css: Optional[str] = None,
**kwargs,
):
"""
Parameters:
theme: which theme to use - right now, only "default" is supported.
analytics_enabled: whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True.
mode: a human-friendly name for the kind of Blocks interface being created.
title: The tab title to display when this is opened in a browser window.
css: custom css or path to custom css file to apply to entire Blocks
"""
self.limiter = None
self.save_to = None
self.theme = theme
self.requires_permissions = False
self.encrypt = False
self.share = False
self.enable_queue = None
self.max_threads = 40
self.show_error = True
if css is not None and os.path.exists(css):
with open(css) as css_file:
self.css = css_file.read()
else:
self.css = css
self.analytics_enabled = (
analytics_enabled
if analytics_enabled is not None
else os.getenv("GRADIO_ANALYTICS_ENABLED", "True") == "True"
)
super().__init__(render=False, **kwargs)
self.blocks: Dict[int, Block] = {}
self.fns: List[BlockFunction] = []
self.dependencies = []
self.mode = mode
self.is_running = False
self.local_url = None
self.share_url = None
self.width = None
self.height = None
self.api_open = True
self.ip_address = None
self.is_space = True if os.getenv("SYSTEM") == "spaces" else False
self.favicon_path = None
self.auth = None
self.dev_mode = True
self.app_id = random.getrandbits(64)
self.temp_dirs = set()
self.title = title
self.show_api = True
if self.analytics_enabled:
self.ip_address = utils.get_local_ip_address()
data = {
"mode": self.mode,
"ip_address": self.ip_address,
"custom_css": self.css is not None,
"theme": self.theme,
"version": pkgutil.get_data(__name__, "version.txt")
.decode("ascii")
.strip(),
}
utils.initiated_analytics(data)
@classmethod
def from_config(
cls, config: dict, fns: List[Callable], root_url: str | None = None
) -> Blocks:
"""
Factory method that creates a Blocks from a config and list of functions.
Parameters:
config: a dictionary containing the configuration of the Blocks.
fns: a list of functions that are used in the Blocks. Must be in the same order as the dependencies in the config.
root_url: an optional root url to use for the components in the Blocks. Allows serving files from an external URL.
"""
config = copy.deepcopy(config)
components_config = config["components"]
original_mapping: Dict[int, Block] = {}
def get_block_instance(id: int) -> Block:
for block_config in components_config:
if block_config["id"] == id:
break
else:
raise ValueError("Cannot find block with id {}".format(id))
cls = component_or_layout_class(block_config["type"])
block_config["props"].pop("type", None)
block_config["props"].pop("name", None)
style = block_config["props"].pop("style", None)
if block_config["props"].get("root_url") is None and root_url:
block_config["props"]["root_url"] = root_url + "/"
block = cls(**block_config["props"])
if style:
block.style(**style)
return block
def iterate_over_children(children_list):
for child_config in children_list:
id = child_config["id"]
block = get_block_instance(id)
original_mapping[id] = block
children = child_config.get("children")
if children is not None:
with block:
iterate_over_children(children)
with Blocks(theme=config["theme"], css=config["theme"]) as blocks:
original_mapping[0] = Context.root_block or blocks
iterate_over_children(config["layout"]["children"])
first_dependency = None
for dependency, fn in zip(config["dependencies"], fns):
targets = dependency.pop("targets")
trigger = dependency.pop("trigger")
dependency.pop("backend_fn")
dependency.pop("documentation", None)
dependency["inputs"] = [
original_mapping[i] for i in dependency["inputs"]
]
dependency["outputs"] = [
original_mapping[o] for o in dependency["outputs"]
]
dependency.pop("status_tracker", None)
dependency["preprocess"] = False
dependency["postprocess"] = False
for target in targets:
dependency = original_mapping[target].set_event_trigger(
event_name=trigger, fn=fn, **dependency
)
if first_dependency is None:
first_dependency = dependency
blocks.predict = [fns[0]]
blocks.input_components = [
Context.root_block.blocks[i] for i in first_dependency["inputs"]
]
blocks.output_components = [
Context.root_block.blocks[o] for o in first_dependency["outputs"]
]
if config.get("mode", "blocks") == "interface":
blocks.__name__ = "Interface"
blocks.mode = "interface"
blocks.api_mode = True
return blocks
def __str__(self):
return self.__repr__()
def __repr__(self):
num_backend_fns = len([d for d in self.dependencies if d["backend_fn"]])
repr = f"Gradio Blocks instance: {num_backend_fns} backend functions"
repr += "\n" + "-" * len(repr)
for d, dependency in enumerate(self.dependencies):
if dependency["backend_fn"]:
repr += f"\nfn_index={d}"
repr += "\n inputs:"
for input_id in dependency["inputs"]:
block = self.blocks[input_id]
repr += "\n |-{}".format(str(block))
repr += "\n outputs:"
for output_id in dependency["outputs"]:
block = self.blocks[output_id]
repr += "\n |-{}".format(str(block))
return repr
def render(self):
if Context.root_block is not None:
if self._id in Context.root_block.blocks:
raise DuplicateBlockError(
f"A block with id: {self._id} has already been rendered in the current Blocks."
)
if not set(Context.root_block.blocks).isdisjoint(self.blocks):
raise DuplicateBlockError(
"At least one block in this Blocks has already been rendered."
)
Context.root_block.blocks.update(self.blocks)
Context.root_block.fns.extend(self.fns)
dependency_offset = len(Context.root_block.dependencies)
for i, dependency in enumerate(self.dependencies):
api_name = dependency["api_name"]
if api_name is not None:
api_name_ = utils.append_unique_suffix(
api_name,
[dep["api_name"] for dep in Context.root_block.dependencies],
)
if not (api_name == api_name_):
warnings.warn(
"api_name {} already exists, using {}".format(
api_name, api_name_
)
)
dependency["api_name"] = api_name_
dependency["cancels"] = [
c + dependency_offset for c in dependency["cancels"]
]
if dependency["cancels"]:
updated_cancels = [
Context.root_block.dependencies[i]
for i in dependency["cancels"]
]
new_fn = BlockFunction(
get_cancel_function(updated_cancels)[0],
[],
[],
False,
True,
False,
)
Context.root_block.fns[dependency_offset + i] = new_fn
Context.root_block.dependencies.append(dependency)
Context.root_block.temp_dirs = Context.root_block.temp_dirs | self.temp_dirs
if Context.block is not None:
Context.block.children.extend(self.children)
return self
def is_callable(self, fn_index: int = 0) -> bool:
"""Checks if a particular Blocks function is callable (i.e. not stateful or a generator)."""
block_fn = self.fns[fn_index]
dependency = self.dependencies[fn_index]
if inspect.isasyncgenfunction(block_fn.fn):
return False
if inspect.isgeneratorfunction(block_fn.fn):
raise False
for input_id in dependency["inputs"]:
block = self.blocks[input_id]
if getattr(block, "stateful", False):
return False
for output_id in dependency["outputs"]:
block = self.blocks[output_id]
if getattr(block, "stateful", False):
return False
return True
def __call__(self, *inputs, fn_index: int = 0, api_name: str = None):
"""
Allows Blocks objects to be called as functions. Supply the parameters to the
function as positional arguments. To choose which function to call, use the
fn_index parameter, which must be a keyword argument.
Parameters:
*inputs: the parameters to pass to the function
fn_index: the index of the function to call (defaults to 0, which for Interfaces, is the default prediction function)
api_name: The api_name of the dependency to call. Will take precedence over fn_index.
"""
if api_name is not None:
fn_index = next(
(
i
for i, d in enumerate(self.dependencies)
if d.get("api_name") == api_name
),
None,
)
if fn_index is None:
raise InvalidApiName(f"Cannot find a function with api_name {api_name}")
if not (self.is_callable(fn_index)):
raise ValueError(
"This function is not callable because it is either stateful or is a generator. Please use the .launch() method instead to create an interactive user interface."
)
inputs = list(inputs)
processed_inputs = self.serialize_data(fn_index, inputs)
batch = self.dependencies[fn_index]["batch"]
if batch:
processed_inputs = [[inp] for inp in processed_inputs]
outputs = utils.synchronize_async(self.process_api, fn_index, processed_inputs)
outputs = outputs["data"]
if batch:
outputs = [out[0] for out in outputs]
processed_outputs = self.deserialize_data(fn_index, outputs)
processed_outputs = utils.resolve_singleton(processed_outputs)
return processed_outputs
async def call_function(
self,
fn_index: int,
processed_input: List[Any],
iterator: Iterator[Any] | None = None,
):
"""Calls and times function with given index and preprocessed input."""
block_fn = self.fns[fn_index]
is_generating = False
start = time.time()
if block_fn.inputs_as_dict:
processed_input = [
{
input_component: data
for input_component, data in zip(block_fn.inputs, processed_input)
}
]
if iterator is None:
if inspect.iscoroutinefunction(block_fn.fn):
prediction = await block_fn.fn(*processed_input)
else:
prediction = await anyio.to_thread.run_sync(
block_fn.fn, *processed_input, limiter=self.limiter
)
if inspect.isasyncgenfunction(block_fn.fn):
raise ValueError("Gradio does not support async generators.")
if inspect.isgeneratorfunction(block_fn.fn):
if not self.enable_queue:
raise ValueError("Need to enable queue to use generators.")
try:
if iterator is None:
iterator = prediction
prediction = await anyio.to_thread.run_sync(
utils.async_iteration, iterator, limiter=self.limiter
)
is_generating = True
except StopAsyncIteration:
n_outputs = len(self.dependencies[fn_index].get("outputs"))
prediction = (
components._Keywords.FINISHED_ITERATING
if n_outputs == 1
else (components._Keywords.FINISHED_ITERATING,) * n_outputs
)
iterator = None
duration = time.time() - start
return {
"prediction": prediction,
"duration": duration,
"is_generating": is_generating,
"iterator": iterator,
}
def serialize_data(self, fn_index: int, inputs: List[Any]) -> List[Any]:
dependency = self.dependencies[fn_index]
processed_input = []
for i, input_id in enumerate(dependency["inputs"]):
block: IOComponent = self.blocks[input_id]
serialized_input = block.serialize(inputs[i])
processed_input.append(serialized_input)
return processed_input
def deserialize_data(self, fn_index: int, outputs: List[Any]) -> List[Any]:
dependency = self.dependencies[fn_index]
predictions = []
for o, output_id in enumerate(dependency["outputs"]):
block: IOComponent = self.blocks[output_id]
deserialized = block.deserialize(outputs[o])
predictions.append(deserialized)
return predictions
def preprocess_data(self, fn_index: int, inputs: List[Any], state: Dict[int, Any]):
block_fn = self.fns[fn_index]
dependency = self.dependencies[fn_index]
if block_fn.preprocess:
processed_input = []
for i, input_id in enumerate(dependency["inputs"]):
block: IOComponent = self.blocks[input_id]
if getattr(block, "stateful", False):
processed_input.append(state.get(input_id))
else:
processed_input.append(block.preprocess(inputs[i]))
else:
processed_input = inputs
return processed_input
def postprocess_data(
self, fn_index: int, predictions: List[Any], state: Dict[int, Any]
):
block_fn = self.fns[fn_index]
dependency = self.dependencies[fn_index]
batch = dependency["batch"]
if type(predictions) is dict and len(predictions) > 0:
predictions = convert_component_dict_to_list(
dependency["outputs"], predictions
)
if len(dependency["outputs"]) == 1 and not (batch):
predictions = (predictions,)
output = []
for i, output_id in enumerate(dependency["outputs"]):
if predictions[i] is components._Keywords.FINISHED_ITERATING:
output.append(None)
continue
block = self.blocks[output_id]
if getattr(block, "stateful", False):
if not utils.is_update(predictions[i]):
state[output_id] = predictions[i]
output.append(None)
else:
prediction_value = predictions[i]
if utils.is_update(prediction_value):
prediction_value = postprocess_update_dict(
block=block,
update_dict=prediction_value,
postprocess=block_fn.postprocess,
)
elif block_fn.postprocess:
prediction_value = block.postprocess(prediction_value)
output.append(prediction_value)
return output
async def process_api(
self,
fn_index: int,
inputs: List[Any],
username: str = None,
state: Dict[int, Any] | List[Dict[int, Any]] | None = None,
iterators: Dict[int, Any] | None = None,
) -> Dict[str, Any]:
"""
Processes API calls from the frontend. First preprocesses the data,
then runs the relevant function, then postprocesses the output.
Parameters:
fn_index: Index of function to run.
inputs: input data received from the frontend
username: name of user if authentication is set up (not used)
state: data stored from stateful components for session (key is input block id)
iterators: the in-progress iterators for each generator function (key is function index)
Returns: None
"""
block_fn = self.fns[fn_index]
batch = self.dependencies[fn_index]["batch"]
if batch:
max_batch_size = self.dependencies[fn_index]["max_batch_size"]
batch_sizes = [len(inp) for inp in inputs]
batch_size = batch_sizes[0]
if inspect.isasyncgenfunction(block_fn.fn) or inspect.isgeneratorfunction(
block_fn.fn
):
raise ValueError("Gradio does not support generators in batch mode.")
if not all(x == batch_size for x in batch_sizes):
raise ValueError(
f"All inputs to a batch function must have the same length but instead have sizes: {batch_sizes}."
)
if batch_size > max_batch_size:
raise ValueError(
f"Batch size ({batch_size}) exceeds the max_batch_size for this function ({max_batch_size})"
)
inputs = [self.preprocess_data(fn_index, i, state) for i in zip(*inputs)]
result = await self.call_function(fn_index, zip(*inputs), None)
preds = result["prediction"]
data = [self.postprocess_data(fn_index, o, state) for o in zip(*preds)]
data = list(zip(*data))
is_generating, iterator = None, None
else:
inputs = self.preprocess_data(fn_index, inputs, state)
iterator = iterators.get(fn_index, None) if iterators else None
result = await self.call_function(fn_index, inputs, iterator)
data = self.postprocess_data(fn_index, result["prediction"], state)
is_generating, iterator = result["is_generating"], result["iterator"]
block_fn.total_runtime += result["duration"]
block_fn.total_runs += 1
return {
"data": data,
"is_generating": is_generating,
"iterator": iterator,
"duration": result["duration"],
"average_duration": block_fn.total_runtime / block_fn.total_runs,
}
async def create_limiter(self):
self.limiter = (
None
if self.max_threads == 40
else CapacityLimiter(total_tokens=self.max_threads)
)
def get_config(self):
return {"type": "column"}
def get_config_file(self):
config = {
"version": routes.VERSION,
"mode": self.mode,
"dev_mode": self.dev_mode,
"components": [],
"theme": self.theme,
"css": self.css,
"title": self.title or "Gradio",
"is_space": self.is_space,
"enable_queue": getattr(self, "enable_queue", False),
"show_error": getattr(self, "show_error", False),
"show_api": self.show_api,
"is_colab": utils.colab_check(),
}
def getLayout(block):
if not isinstance(block, BlockContext):
return {"id": block._id}
children_layout = []
for child in block.children:
children_layout.append(getLayout(child))
return {"id": block._id, "children": children_layout}
config["layout"] = getLayout(self)
for _id, block in self.blocks.items():
config["components"].append(
{
"id": _id,
"type": (block.get_block_name()),
"props": utils.delete_none(block.get_config())
if hasattr(block, "get_config")
else {},
}
)
config["dependencies"] = self.dependencies
return config
def __enter__(self):
if Context.block is None:
Context.root_block = self
self.parent = Context.block
Context.block = self
return self
def __exit__(self, *args):
super().fill_expected_parents()
Context.block = self.parent
self.attach_load_events()
if self.parent is None:
Context.root_block = None
else:
self.parent.children.extend(self.children)
self.config = self.get_config_file()
self.app = routes.App.create_app(self)
@class_or_instancemethod
def load(
self_or_cls,
fn: Optional[Callable] = None,
inputs: Optional[List[Component]] = None,
outputs: Optional[List[Component]] = None,
*,
name: Optional[str] = None,
src: Optional[str] = None,
api_key: Optional[str] = None,
alias: Optional[str] = None,
_js: Optional[str] = None,
every: None | int = None,
**kwargs,
) -> Blocks | Dict[str, Any] | None:
"""
For reverse compatibility reasons, this is both a class method and an instance
method, the two of which, confusingly, do two completely different things.
Class method: loads a demo from a Hugging Face Spaces repo and creates it locally and returns a block instance. Equivalent to gradio.Interface.load()
Instance method: adds event that runs as soon as the demo loads in the browser. Example usage below.
Parameters:
name: Class Method - the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
src: Class Method - the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
api_key: Class Method - optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co/settings/tokens
alias: Class Method - optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
fn: Instance Method - Callable function
inputs: Instance Method - input list
outputs: Instance Method - output list
every: Instance Method - Run this event 'every' number of seconds. Interpreted in seconds. Queue must be enabled.
Example:
import gradio as gr
import datetime
with gr.Blocks() as demo:
def get_time():
return datetime.datetime.now().time()
dt = gr.Textbox(label="Current time")
demo.load(get_time, inputs=None, outputs=dt)
demo.launch()
"""
if isinstance(self_or_cls, type):
if name is None:
raise ValueError(
"Blocks.load() requires passing parameters as keyword arguments"
)
return external.load_blocks_from_repo(name, src, api_key, alias, **kwargs)
else:
return self_or_cls.set_event_trigger(
event_name="load",
fn=fn,
inputs=inputs,
outputs=outputs,
js=_js,
no_target=True,
every=every,
)
def clear(self):
"""Resets the layout of the Blocks object."""
self.blocks = {}
self.fns = []
self.dependencies = []
self.children = []
return self
@document()
def queue(
self,
concurrency_count: int = 1,
status_update_rate: float | str = "auto",
client_position_to_load_data: int = 30,
default_enabled: bool = True,
api_open: bool = True,
max_size: Optional[int] = None,
):
"""
You can control the rate of processed requests by creating a queue. This will allow you to set the number of requests to be processed at one time, and will let users know their position in the queue.
Parameters:
concurrency_count: Number of worker threads that will be processing requests concurrently.
status_update_rate: If "auto", Queue will send status estimations to all clients whenever a job is finished. Otherwise Queue will send status at regular intervals set by this parameter as the number of seconds.
client_position_to_load_data: Once a client's position in Queue is less that this value, the Queue will collect the input data from the client. You may make this smaller if clients can send large volumes of data, such as video, since the queued data is stored in memory.
default_enabled: If True, all event listeners will use queueing by default.
api_open: If True, the REST routes of the backend will be open, allowing requests made directly to those endpoints to skip the queue.
max_size: The maximum number of events the queue will store at any given moment.
Example:
demo = gr.Interface(gr.Textbox(), gr.Image(), image_generator)
demo.queue(concurrency_count=3)
demo.launch()
"""
self.enable_queue = default_enabled
self.api_open = api_open
self._queue = queue.Queue(
live_updates=status_update_rate == "auto",
concurrency_count=concurrency_count,
data_gathering_start=client_position_to_load_data,
update_intervals=status_update_rate if status_update_rate != "auto" else 1,
max_size=max_size,
blocks_dependencies=self.dependencies,
)
self.config = self.get_config_file()
return self
def launch(
self,
inline: bool = None,
inbrowser: bool = False,
share: Optional[bool] = None,
debug: bool = False,
enable_queue: bool = None,
max_threads: int = 40,
auth: Optional[Callable | Tuple[str, str] | List[Tuple[str, str]]] = None,
auth_message: Optional[str] = None,
prevent_thread_lock: bool = False,
show_error: bool = False,
server_name: Optional[str] = None,
server_port: Optional[int] = None,
show_tips: bool = False,
height: int = 500,
width: int | str = "100%",
encrypt: bool = False,
favicon_path: Optional[str] = None,
ssl_keyfile: Optional[str] = None,
ssl_certfile: Optional[str] = None,
ssl_keyfile_password: Optional[str] = None,
quiet: bool = False,
show_api: bool = True,
_frontend: bool = True,
) -> Tuple[FastAPI, str, str]:
"""
Launches a simple web server that serves the demo. Can also be used to create a
public link used by anyone to access the demo from their browser by setting share=True.
Parameters:
inline: whether to display in the interface inline in an iframe. Defaults to True in python notebooks; False otherwise.
inbrowser: whether to automatically launch the interface in a new tab on the default browser.
share: whether to create a publicly shareable link for the interface. Creates an SSH tunnel to make your UI accessible from anywhere. If not provided, it is set to False by default every time, except when running in Google Colab. When localhost is not accessible (e.g. Google Colab), setting share=False is not supported.
debug: if True, blocks the main thread from running. If running in Google Colab, this is needed to print the errors in the cell output.
auth: If provided, username and password (or list of username-password tuples) required to access interface. Can also provide function that takes username and password and returns True if valid login.
auth_message: If provided, HTML message provided on login page.
prevent_thread_lock: If True, the interface will block the main thread while the server is running.
show_error: If True, any errors in the interface will be displayed in an alert modal and printed in the browser console log
server_port: will start gradio app on this port (if available). Can be set by environment variable GRADIO_SERVER_PORT. If None, will search for an available port starting at 7860.
server_name: to make app accessible on local network, set this to "0.0.0.0". Can be set by environment variable GRADIO_SERVER_NAME. If None, will use "127.0.0.1".
show_tips: if True, will occasionally show tips about new Gradio features
enable_queue: DEPRECATED (use .queue() method instead.) if True, inference requests will be served through a queue instead of with parallel threads. Required for longer inference times (> 1min) to prevent timeout. The default option in HuggingFace Spaces is True. The default option elsewhere is False.
max_threads: allow up to `max_threads` to be processed in parallel. The default is inherited from the starlette library (currently 40).
width: The width in pixels of the iframe element containing the interface (used if inline=True)
height: The height in pixels of the iframe element containing the interface (used if inline=True)
encrypt: If True, flagged data will be encrypted by key provided by creator at launch
favicon_path: If a path to a file (.png, .gif, or .ico) is provided, it will be used as the favicon for the web page.
ssl_keyfile: If a path to a file is provided, will use this as the private key file to create a local server running on https.
ssl_certfile: If a path to a file is provided, will use this as the signed certificate for https. Needs to be provided if ssl_keyfile is provided.
ssl_keyfile_password: If a password is provided, will use this with the ssl certificate for https.
quiet: If True, suppresses most print statements.
show_api: If True, shows the api docs in the footer of the app. Default True. If the queue is enabled, then api_open parameter of .queue() will determine if the api docs are shown, independent of the value of show_api.
Returns:
app: FastAPI app object that is running the demo
local_url: Locally accessible link to the demo
share_url: Publicly accessible link to the demo (if share=True, otherwise None)
Example:
import gradio as gr
def reverse(text):
return text[::-1]
demo = gr.Interface(reverse, "text", "text")
demo.launch(share=True, auth=("username", "password"))
"""
self.dev_mode = False
if (
auth
and not callable(auth)
and not isinstance(auth[0], tuple)
and not isinstance(auth[0], list)
):
auth = [auth]
self.auth = auth
self.auth_message = auth_message
self.show_tips = show_tips
self.show_error = show_error
self.height = height
self.width = width
self.favicon_path = favicon_path
if enable_queue is not None:
self.enable_queue = enable_queue
warnings.warn(
"The `enable_queue` parameter has been deprecated. Please use the `.queue()` method instead.",
DeprecationWarning,
)
if self.is_space:
self.enable_queue = self.enable_queue is not False
else:
self.enable_queue = self.enable_queue is True
if self.enable_queue and not hasattr(self, "_queue"):
self.queue()
self.show_api = self.api_open if self.enable_queue else show_api
for dep in self.dependencies:
for i in dep["cancels"]:
if not self.queue_enabled_for_fn(i):
raise ValueError(
"In order to cancel an event, the queue for that event must be enabled! "
"You may get this error by either 1) passing a function that uses the yield keyword "
"into an interface without enabling the queue or 2) defining an event that cancels "
"another event without enabling the queue. Both can be solved by calling .queue() "
"before .launch()"
)
if dep["batch"] and (
dep["queue"] is False
or (dep["queue"] is None and not self.enable_queue)
):
raise ValueError("In order to use batching, the queue must be enabled.")
self.config = self.get_config_file()
self.encrypt = encrypt
self.max_threads = max(
self._queue.max_thread_count if self.enable_queue else 0, max_threads
)
if self.encrypt:
self.encryption_key = encryptor.get_key(
getpass.getpass("Enter key for encryption: ")
)
if self.is_running:
self.server_app.launchable = self
if not (quiet):
print(
"Rerunning server... use `close()` to stop if you need to change `launch()` parameters.\n----"
)
else:
server_name, server_port, local_url, app, server = networking.start_server(
self,
server_name,
server_port,
ssl_keyfile,
ssl_certfile,
ssl_keyfile_password,
)
self.server_name = server_name
self.local_url = local_url
self.server_port = server_port
self.server_app = app
self.server = server
self.is_running = True
self.is_colab = utils.colab_check()
self.protocol = (
"https"
if self.local_url.startswith("https") or self.is_colab
else "http"
)
if self.enable_queue:
self._queue.set_url(self.local_url)
requests.get(f"{self.local_url}startup-events")
if self.enable_queue:
if self.auth is not None or self.encrypt:
raise ValueError(
"Cannot queue with encryption or authentication enabled."
)
utils.launch_counter()
self.share = (
share
if share is not None
else True
if self.is_colab and self.enable_queue
else False
)
if _frontend and (not networking.url_ok(self.local_url)) and (not self.share):
raise ValueError(
"When localhost is not accessible, a shareable link must be created. Please set share=True."
)
if self.is_colab:
if not quiet:
if debug:
print(strings.en["COLAB_DEBUG_TRUE"])
else:
print(strings.en["COLAB_DEBUG_FALSE"])
if not self.share:
print(strings.en["COLAB_BETA"].format(self.server_port))
if self.enable_queue and not self.share:
raise ValueError(
"When using queueing in Colab, a shareable link must be created. Please set share=True."
)
else:
if not self.share:
print(f'Running on local URL: https://{self.server_name}')
if self.share:
if self.is_space:
raise RuntimeError("Share is not supported when you are in Spaces")
try:
if self.share_url is None:
share_url = networking.setup_tunnel(self.server_port, None)
self.share_url = share_url
print(strings.en["SHARE_LINK_DISPLAY"].format(self.share_url))
if not (quiet):
print('[32m\u2714 Connected')
except RuntimeError:
if self.analytics_enabled:
utils.error_analytics(self.ip_address, "Not able to set up tunnel")
self.share_url = None
self.share = False
print(strings.en["COULD_NOT_GET_SHARE_LINK"])
else:
if not (quiet):
print('[32m\u2714 Connected')
self.share_url = None
if inbrowser:
link = self.share_url if self.share else self.local_url
webbrowser.open(link)
if inline is None:
inline = utils.ipython_check() and (auth is None)
if inline:
if auth is not None:
print(
"Warning: authentication is not supported inline. Please"
"click the link to access the interface in a new tab."
)
try:
from IPython.display import HTML, Javascript, display
if self.share:
while not networking.url_ok(self.share_url):
time.sleep(0.25)
display(
HTML(
f'<div><iframe src="{self.share_url}" width="{self.width}" height="{self.height}" allow="autoplay; camera; microphone; clipboard-read; clipboard-write;" frameborder="0" allowfullscreen></iframe></div>'
)
)
elif self.is_colab:
code = """(async (port, path, width, height, cache, element) => {
if (!google.colab.kernel.accessAllowed && !cache) {
return;
}
element.appendChild(document.createTextNode(''));
const url = await google.colab.kernel.proxyPort(port, {cache});
const external_link = document.createElement('div');
external_link.innerHTML = `
<div style="font-family: monospace; margin-bottom: 0.5rem">
Running on <a href=${new URL(path, url).toString()} target="_blank">
https://localhost:${port}${path}
</a>
</div>
`;
element.appendChild(external_link);
const iframe = document.createElement('iframe');
iframe.src = new URL(path, url).toString();
iframe.height = height;
iframe.allow = "autoplay; camera; microphone; clipboard-read; clipboard-write;"
iframe.width = width;
iframe.style.border = 0;
element.appendChild(iframe);
})""" + "({port}, {path}, {width}, {height}, {cache}, window.element)".format(
port=json.dumps(self.server_port),
path=json.dumps("/"),
width=json.dumps(self.width),
height=json.dumps(self.height),
cache=json.dumps(False),
)
display(Javascript(code))
else:
display(
HTML(
f'<div><iframe src="{self.local_url}" width="{self.width}" height="{self.height}" allow="autoplay; camera; microphone; clipboard-read; clipboard-write;" frameborder="0" allowfullscreen></iframe></div>'
)
)
except ImportError:
pass
if getattr(self, "analytics_enabled", False):
data = {
"launch_method": "browser" if inbrowser else "inline",
"is_google_colab": self.is_colab,
"is_sharing_on": self.share,
"share_url": self.share_url,
"ip_address": self.ip_address,
"enable_queue": self.enable_queue,
"show_tips": self.show_tips,
"server_name": server_name,
"server_port": server_port,
"is_spaces": self.is_space,
"mode": self.mode,
}
utils.launch_analytics(data)
utils.show_tip(self)
if debug or int(os.getenv("GRADIO_DEBUG", 0)) == 1:
self.block_thread()
is_in_interactive_mode = bool(getattr(sys, "ps1", sys.flags.interactive))
if not prevent_thread_lock and not is_in_interactive_mode:
self.block_thread()
return self.server_app, self.local_url, self.share_url
def integrate(
self,
comet_ml: comet_ml.Experiment = None,
wandb: ModuleType("wandb") = None,
mlflow: ModuleType("mlflow") = None,
) -> None:
"""
A catch-all method for integrating with other libraries. This method should be run after launch()
Parameters:
comet_ml: If a comet_ml Experiment object is provided, will integrate with the experiment and appear on Comet dashboard
wandb: If the wandb module is provided, will integrate with it and appear on WandB dashboard
mlflow: If the mlflow module is provided, will integrate with the experiment and appear on ML Flow dashboard
"""
analytics_integration = ""
if comet_ml is not None:
analytics_integration = "CometML"
comet_ml.log_other("Created from", "Gradio")
if self.share_url is not None:
comet_ml.log_text("gradio: " + self.share_url)
comet_ml.end()
else:
comet_ml.log_text("gradio: " + self.local_url)
comet_ml.end()
if wandb is not None:
analytics_integration = "WandB"
if self.share_url is not None:
wandb.log(
{
"Gradio panel": wandb.Html(
'<iframe src="'
+ self.share_url
+ '" width="'
+ str(self.width)
+ '" height="'
+ str(self.height)
+ '" frameBorder="0"></iframe>'
)
}
)
else:
print(
"The WandB integration requires you to "
"`launch(share=True)` first."
)
if mlflow is not None:
analytics_integration = "MLFlow"
if self.share_url is not None:
mlflow.log_param("Gradio Interface Share Link", self.share_url)
else:
mlflow.log_param("Gradio Interface Local Link", self.local_url)
if self.analytics_enabled and analytics_integration:
data = {"integration": analytics_integration}
utils.integration_analytics(data)
def close(self, verbose: bool = True) -> None:
"""
Closes the Interface that was launched and frees the port.
"""
try:
if self.enable_queue:
self._queue.close()
self.server.close()
self.is_running = False
if verbose:
print("Closing server running on port: {}".format(self.server_port))
except (AttributeError, OSError):
pass
def block_thread(
self,
) -> None:
"""Block main thread until interrupted by user."""
try:
while True:
time.sleep(0.1)
except (KeyboardInterrupt, OSError):
print("Keyboard interruption in main thread... closing server.")
self.server.close()
def attach_load_events(self):
"""Add a load event for every component whose initial value should be randomized."""
for component in Context.root_block.blocks.values():
if (
isinstance(component, components.IOComponent)
and component.attach_load_event
):
self.set_event_trigger(
"load",
component.load_fn,
None,
component,
no_target=True,
queue=False,
)
def startup_events(self):
"""Events that should be run when the app containing this block starts up."""
if self.enable_queue:
utils.run_coro_in_background(self._queue.start)
utils.run_coro_in_background(self.create_limiter)
def queue_enabled_for_fn(self, fn_index: int):
if self.dependencies[fn_index]["queue"] is None:
return self.enable_queue
return self.dependencies[fn_index]["queue"]