Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
TheLastBen
GitHub Repository: TheLastBen/fast-stable-diffusion
Path: blob/main/Dreambooth/convertosd.py
540 views
1
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
2
# *Only* converts the UNet, VAE, and Text Encoder.
3
# Does not convert optimizer state or any other thing.
4
# Written by jachiam
5
6
import argparse
7
import os.path as osp
8
9
import torch
10
11
12
# =================#
13
# UNet Conversion #
14
# =================#
15
16
unet_conversion_map = [
17
# (stable-diffusion, HF Diffusers)
18
("time_embed.0.weight", "time_embedding.linear_1.weight"),
19
("time_embed.0.bias", "time_embedding.linear_1.bias"),
20
("time_embed.2.weight", "time_embedding.linear_2.weight"),
21
("time_embed.2.bias", "time_embedding.linear_2.bias"),
22
("input_blocks.0.0.weight", "conv_in.weight"),
23
("input_blocks.0.0.bias", "conv_in.bias"),
24
("out.0.weight", "conv_norm_out.weight"),
25
("out.0.bias", "conv_norm_out.bias"),
26
("out.2.weight", "conv_out.weight"),
27
("out.2.bias", "conv_out.bias"),
28
]
29
30
unet_conversion_map_resnet = [
31
# (stable-diffusion, HF Diffusers)
32
("in_layers.0", "norm1"),
33
("in_layers.2", "conv1"),
34
("out_layers.0", "norm2"),
35
("out_layers.3", "conv2"),
36
("emb_layers.1", "time_emb_proj"),
37
("skip_connection", "conv_shortcut"),
38
]
39
40
unet_conversion_map_layer = []
41
# hardcoded number of downblocks and resnets/attentions...
42
# would need smarter logic for other networks.
43
for i in range(4):
44
# loop over downblocks/upblocks
45
46
for j in range(2):
47
# loop over resnets/attentions for downblocks
48
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
49
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
50
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
51
52
if i < 3:
53
# no attention layers in down_blocks.3
54
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
55
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
56
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
57
58
for j in range(3):
59
# loop over resnets/attentions for upblocks
60
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
61
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
62
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
63
64
if i > 0:
65
# no attention layers in up_blocks.0
66
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
67
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
68
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
69
70
if i < 3:
71
# no downsample in down_blocks.3
72
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
73
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
74
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
75
76
# no upsample in up_blocks.3
77
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
78
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
79
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
80
81
hf_mid_atn_prefix = "mid_block.attentions.0."
82
sd_mid_atn_prefix = "middle_block.1."
83
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
84
85
for j in range(2):
86
hf_mid_res_prefix = f"mid_block.resnets.{j}."
87
sd_mid_res_prefix = f"middle_block.{2*j}."
88
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
89
90
91
def convert_unet_state_dict(unet_state_dict):
92
# buyer beware: this is a *brittle* function,
93
# and correct output requires that all of these pieces interact in
94
# the exact order in which I have arranged them.
95
mapping = {k: k for k in unet_state_dict.keys()}
96
for sd_name, hf_name in unet_conversion_map:
97
mapping[hf_name] = sd_name
98
for k, v in mapping.items():
99
if "resnets" in k:
100
for sd_part, hf_part in unet_conversion_map_resnet:
101
v = v.replace(hf_part, sd_part)
102
mapping[k] = v
103
for k, v in mapping.items():
104
for sd_part, hf_part in unet_conversion_map_layer:
105
v = v.replace(hf_part, sd_part)
106
mapping[k] = v
107
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
108
return new_state_dict
109
110
111
# ================#
112
# VAE Conversion #
113
# ================#
114
115
vae_conversion_map = [
116
# (stable-diffusion, HF Diffusers)
117
("nin_shortcut", "conv_shortcut"),
118
("norm_out", "conv_norm_out"),
119
("mid.attn_1.", "mid_block.attentions.0."),
120
]
121
122
for i in range(4):
123
# down_blocks have two resnets
124
for j in range(2):
125
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
126
sd_down_prefix = f"encoder.down.{i}.block.{j}."
127
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
128
129
if i < 3:
130
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
131
sd_downsample_prefix = f"down.{i}.downsample."
132
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
133
134
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
135
sd_upsample_prefix = f"up.{3-i}.upsample."
136
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
137
138
# up_blocks have three resnets
139
# also, up blocks in hf are numbered in reverse from sd
140
for j in range(3):
141
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
142
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
143
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
144
145
# this part accounts for mid blocks in both the encoder and the decoder
146
for i in range(2):
147
hf_mid_res_prefix = f"mid_block.resnets.{i}."
148
sd_mid_res_prefix = f"mid.block_{i+1}."
149
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
150
151
152
vae_conversion_map_attn = [
153
# (stable-diffusion, HF Diffusers)
154
("norm.", "group_norm."),
155
("q.", "query."),
156
("k.", "key."),
157
("v.", "value."),
158
("proj_out.", "proj_attn."),
159
]
160
161
162
def reshape_weight_for_sd(w):
163
# convert HF linear weights to SD conv2d weights
164
return w.reshape(*w.shape, 1, 1)
165
166
167
def convert_vae_state_dict(vae_state_dict):
168
mapping = {k: k for k in vae_state_dict.keys()}
169
for k, v in mapping.items():
170
for sd_part, hf_part in vae_conversion_map:
171
v = v.replace(hf_part, sd_part)
172
mapping[k] = v
173
for k, v in mapping.items():
174
if "attentions" in k:
175
for sd_part, hf_part in vae_conversion_map_attn:
176
v = v.replace(hf_part, sd_part)
177
mapping[k] = v
178
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
179
weights_to_convert = ["q", "k", "v", "proj_out"]
180
print("Converting to CKPT ...")
181
for k, v in new_state_dict.items():
182
for weight_name in weights_to_convert:
183
if f"mid.attn_1.{weight_name}.weight" in k:
184
new_state_dict[k] = reshape_weight_for_sd(v)
185
return new_state_dict
186
187
188
# =========================#
189
# Text Encoder Conversion #
190
# =========================#
191
# pretty much a no-op
192
193
194
def convert_text_enc_state_dict(text_enc_dict):
195
return text_enc_dict
196
197
198
if __name__ == "__main__":
199
200
201
model_path = ""
202
checkpoint_path= ""
203
204
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
205
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
206
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
207
208
# Convert the UNet model
209
unet_state_dict = torch.load(unet_path, map_location='cpu')
210
unet_state_dict = convert_unet_state_dict(unet_state_dict)
211
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
212
213
# Convert the VAE model
214
vae_state_dict = torch.load(vae_path, map_location='cpu')
215
vae_state_dict = convert_vae_state_dict(vae_state_dict)
216
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
217
218
# Convert the text encoder model
219
text_enc_dict = torch.load(text_enc_path, map_location='cpu')
220
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
221
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
222
223
# Put together new checkpoint
224
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
225
226
state_dict = {k:v.half() for k,v in state_dict.items()}
227
state_dict = {"state_dict": state_dict}
228
torch.save(state_dict, checkpoint_path)
229
230