Path: blob/master/2019-fall/slides/03_tutorial_class_activity.ipynb
2051 views
Kernel: R
In [1]:
Out[1]:
── Attaching packages ─────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.2.0 ✔ purrr 0.3.2
✔ tibble 2.1.3 ✔ dplyr 0.8.3
✔ tidyr 0.8.3 ✔ stringr 1.4.0
✔ readr 1.3.1 ✔ forcats 0.4.0
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
Parsed with column specification:
cols(
Year = col_double(),
Jan = col_double(),
Feb = col_double(),
Mar = col_double(),
Apr = col_double(),
May = col_double(),
Jun = col_double(),
Jul = col_double(),
Aug = col_double(),
Sep = col_double(),
Oct = col_double(),
Nov = col_double(),
Dec = col_double()
)
Class activity 1:
The airpassenger data set contains the monthly totals of international airline passengers from 1949 to 1960. If we are interested in asking whether year or month has a relationship with the number of monthly international airline passengers would we consider the data below tidy? True or false?
In [2]:
Out[2]:
Class activity 2:
Use the tidyverse functions to make this data set ________.
In [3]:
Class activity 3:
Use the tidyverse function spread
to transform the data set to its original state:
In [4]: