Path: blob/master/lessons/lesson_09/code/Clustering and Regression.ipynb
1904 views
Kernel: Python [conda env:Anaconda3]
Clustering and Regression
In [1]:
Now we generate some sample data.
In [2]:
Out[2]:
C:\Users\jlandesman\Anaconda3\lib\site-packages\scipy\stats\_multivariate.py:651: RuntimeWarning: covariance is not positive-semidefinite.
out = random_state.multivariate_normal(mean, cov, size)
Find Clusters
In [3]:
Out[3]:
Add Cluster Labels back to the Data Frame and Fit a Linear Model
In [4]:
Out[4]:
In [5]:
Out[5]:
0.9853551208165351
In [6]:
Out[6]:
Another example
In [7]:
Out[7]:
C:\Users\jlandesman\Anaconda3\lib\site-packages\scipy\stats\_multivariate.py:651: RuntimeWarning: covariance is not positive-semidefinite.
out = random_state.multivariate_normal(mean, cov, size)
In [8]:
Out[8]:
Modeling
This time we have to fit a model to each cluster since they are not the same shape with offsets.
In [9]:
Out[9]:
Counter({0: 150, 1: 149, 2: 149, -1: 2})
In [10]:
Out[10]:
In [ ]: