Path: blob/master/lessons/lesson_17/Granger Causality.ipynb
1904 views
Kernel: Python 3
Chicken and Eggs and Granger Causality
Data set on US egg production and estimates of US chicken population.
In [1]:
Out[1]:
/anaconda3/lib/python3.6/site-packages/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
from pandas.core import datetools
In [2]:
Out[2]:
array([<matplotlib.axes._subplots.AxesSubplot object at 0x10f9db9b0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x112c066d8>],
dtype=object)
Change to percents for stationarity
In [3]:
Out[3]:
array([<matplotlib.axes._subplots.AxesSubplot object at 0x112cde9b0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x112d898d0>],
dtype=object)
In [4]:
Out[4]:
Null Hypothesis is that the time series in the second column does not granger cause the first column
Do eggs granger-cause chickens?
(Null hypothesis: Eggs do not granger cause chickens)
In [5]:
Out[5]:
Granger Causality
number of lags (no zero) 1
ssr based F test: F=10.3694 , p=0.0023 , df_denom=49, df_num=1
ssr based chi2 test: chi2=11.0043 , p=0.0009 , df=1
likelihood ratio test: chi2=9.9819 , p=0.0016 , df=1
parameter F test: F=10.3694 , p=0.0023 , df_denom=49, df_num=1
Granger Causality
number of lags (no zero) 2
ssr based F test: F=3.9196 , p=0.0268 , df_denom=46, df_num=2
ssr based chi2 test: chi2=8.6913 , p=0.0130 , df=2
likelihood ratio test: chi2=8.0254 , p=0.0181 , df=2
parameter F test: F=3.9196 , p=0.0268 , df_denom=46, df_num=2
Granger Causality
number of lags (no zero) 3
ssr based F test: F=2.9318 , p=0.0441 , df_denom=43, df_num=3
ssr based chi2 test: chi2=10.2270 , p=0.0167 , df=3
likelihood ratio test: chi2=9.3049 , p=0.0255 , df=3
parameter F test: F=2.9318 , p=0.0441 , df_denom=43, df_num=3
Granger Causality
number of lags (no zero) 4
ssr based F test: F=4.1762 , p=0.0064 , df_denom=40, df_num=4
ssr based chi2 test: chi2=20.4635 , p=0.0004 , df=4
likelihood ratio test: chi2=17.1001 , p=0.0018 , df=4
parameter F test: F=4.1762 , p=0.0064 , df_denom=40, df_num=4
Granger Causality
number of lags (no zero) 5
ssr based F test: F=3.0577 , p=0.0208 , df_denom=37, df_num=5
ssr based chi2 test: chi2=19.8339 , p=0.0013 , df=5
likelihood ratio test: chi2=16.6014 , p=0.0053 , df=5
parameter F test: F=3.0577 , p=0.0208 , df_denom=37, df_num=5
Granger Causality
number of lags (no zero) 6
ssr based F test: F=2.6883 , p=0.0303 , df_denom=34, df_num=6
ssr based chi2 test: chi2=22.2967 , p=0.0011 , df=6
likelihood ratio test: chi2=18.2477 , p=0.0056 , df=6
parameter F test: F=2.6883 , p=0.0303 , df_denom=34, df_num=6
Granger Causality
number of lags (no zero) 7
ssr based F test: F=2.0445 , p=0.0807 , df_denom=31, df_num=7
ssr based chi2 test: chi2=21.2368 , p=0.0034 , df=7
likelihood ratio test: chi2=17.4607 , p=0.0147 , df=7
parameter F test: F=2.0445 , p=0.0807 , df_denom=31, df_num=7
Granger Causality
number of lags (no zero) 8
ssr based F test: F=2.2817 , p=0.0509 , df_denom=28, df_num=8
ssr based chi2 test: chi2=29.3360 , p=0.0003 , df=8
likelihood ratio test: chi2=22.5870 , p=0.0039 , df=8
parameter F test: F=2.2817 , p=0.0509 , df_denom=28, df_num=8
Granger Causality
number of lags (no zero) 9
ssr based F test: F=1.8727 , p=0.1040 , df_denom=25, df_num=9
ssr based chi2 test: chi2=29.6642 , p=0.0005 , df=9
likelihood ratio test: chi2=22.6744 , p=0.0070 , df=9
parameter F test: F=1.8727 , p=0.1040 , df_denom=25, df_num=9
Granger Causality
number of lags (no zero) 10
ssr based F test: F=2.2821 , p=0.0513 , df_denom=22, df_num=10
ssr based chi2 test: chi2=44.6039 , p=0.0000 , df=10
likelihood ratio test: chi2=30.5999 , p=0.0007 , df=10
parameter F test: F=2.2821 , p=0.0513 , df_denom=22, df_num=10
Granger Causality
number of lags (no zero) 11
ssr based F test: F=1.8222 , p=0.1209 , df_denom=19, df_num=11
ssr based chi2 test: chi2=44.3087 , p=0.0000 , df=11
likelihood ratio test: chi2=30.2510 , p=0.0014 , df=11
parameter F test: F=1.8222 , p=0.1209 , df_denom=19, df_num=11
Granger Causality
number of lags (no zero) 12
ssr based F test: F=1.2835 , p=0.3149 , df_denom=16, df_num=12
ssr based chi2 test: chi2=39.4674 , p=0.0001 , df=12
likelihood ratio test: chi2=27.6455 , p=0.0062 , df=12
parameter F test: F=1.2835 , p=0.3149 , df_denom=16, df_num=12
Reverse the Order
Do Chickens Granger cause Eggs?
(Null hypothesis: Chickens do not granger cause eggs)
In [6]:
Out[6]:
In [7]:
Out[7]:
Granger Causality
number of lags (no zero) 1
ssr based F test: F=0.5434 , p=0.4646 , df_denom=49, df_num=1
ssr based chi2 test: chi2=0.5766 , p=0.4476 , df=1
likelihood ratio test: chi2=0.5734 , p=0.4489 , df=1
parameter F test: F=0.5434 , p=0.4646 , df_denom=49, df_num=1
Granger Causality
number of lags (no zero) 2
ssr based F test: F=0.3865 , p=0.6816 , df_denom=46, df_num=2
ssr based chi2 test: chi2=0.8571 , p=0.6515 , df=2
likelihood ratio test: chi2=0.8500 , p=0.6538 , df=2
parameter F test: F=0.3865 , p=0.6816 , df_denom=46, df_num=2
Granger Causality
number of lags (no zero) 3
ssr based F test: F=0.2245 , p=0.8788 , df_denom=43, df_num=3
ssr based chi2 test: chi2=0.7833 , p=0.8535 , df=3
likelihood ratio test: chi2=0.7772 , p=0.8549 , df=3
parameter F test: F=0.2245 , p=0.8788 , df_denom=43, df_num=3
Granger Causality
number of lags (no zero) 4
ssr based F test: F=0.2817 , p=0.8881 , df_denom=40, df_num=4
ssr based chi2 test: chi2=1.3801 , p=0.8476 , df=4
likelihood ratio test: chi2=1.3611 , p=0.8509 , df=4
parameter F test: F=0.2817 , p=0.8881 , df_denom=40, df_num=4
Granger Causality
number of lags (no zero) 5
ssr based F test: F=0.3181 , p=0.8989 , df_denom=37, df_num=5
ssr based chi2 test: chi2=2.0631 , p=0.8403 , df=5
likelihood ratio test: chi2=2.0200 , p=0.8464 , df=5
parameter F test: F=0.3181 , p=0.8989 , df_denom=37, df_num=5
Granger Causality
number of lags (no zero) 6
ssr based F test: F=0.3060 , p=0.9295 , df_denom=34, df_num=6
ssr based chi2 test: chi2=2.5379 , p=0.8642 , df=6
likelihood ratio test: chi2=2.4717 , p=0.8716 , df=6
parameter F test: F=0.3060 , p=0.9295 , df_denom=34, df_num=6
Granger Causality
number of lags (no zero) 7
ssr based F test: F=0.4101 , p=0.8887 , df_denom=31, df_num=7
ssr based chi2 test: chi2=4.2598 , p=0.7494 , df=7
likelihood ratio test: chi2=4.0739 , p=0.7712 , df=7
parameter F test: F=0.4101 , p=0.8887 , df_denom=31, df_num=7
Granger Causality
number of lags (no zero) 8
ssr based F test: F=0.3128 , p=0.9546 , df_denom=28, df_num=8
ssr based chi2 test: chi2=4.0223 , p=0.8551 , df=8
likelihood ratio test: chi2=3.8525 , p=0.8702 , df=8
parameter F test: F=0.3128 , p=0.9546 , df_denom=28, df_num=8
Granger Causality
number of lags (no zero) 9
ssr based F test: F=0.3113 , p=0.9638 , df_denom=25, df_num=9
ssr based chi2 test: chi2=4.9306 , p=0.8403 , df=9
likelihood ratio test: chi2=4.6734 , p=0.8618 , df=9
parameter F test: F=0.3113 , p=0.9638 , df_denom=25, df_num=9
Granger Causality
number of lags (no zero) 10
ssr based F test: F=0.8446 , p=0.5935 , df_denom=22, df_num=10
ssr based chi2 test: chi2=16.5086 , p=0.0860 , df=10
likelihood ratio test: chi2=13.9716 , p=0.1743 , df=10
parameter F test: F=0.8446 , p=0.5935 , df_denom=22, df_num=10
Granger Causality
number of lags (no zero) 11
ssr based F test: F=1.0149 , p=0.4700 , df_denom=19, df_num=11
ssr based chi2 test: chi2=24.6780 , p=0.0102 , df=11
likelihood ratio test: chi2=19.4126 , p=0.0541 , df=11
parameter F test: F=1.0149 , p=0.4700 , df_denom=19, df_num=11
Granger Causality
number of lags (no zero) 12
ssr based F test: F=0.7956 , p=0.6507 , df_denom=16, df_num=12
ssr based chi2 test: chi2=24.4643 , p=0.0176 , df=12
likelihood ratio test: chi2=19.1852 , p=0.0842 , df=12
parameter F test: F=0.7956 , p=0.6507 , df_denom=16, df_num=12
{1: ({'lrtest': (0.5734490153902243, 0.44889161538627487, 1),
'params_ftest': (0.5433559398878083, 0.46456032713251894, 49.0, 1),
'ssr_chi2test': (0.5766226300849848, 0.44763919540156927, 1),
'ssr_ftest': (0.5433559398877741, 0.4645603271325349, 49.0, 1)},
[<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x10af73e80>,
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x112e50da0>,
array([[0., 1., 0.]])]),
2: ({'lrtest': (0.8499712220999527, 0.6537791922582916, 2),
'params_ftest': (0.3865324025020185, 0.6815945120531242, 46.0, 2),
'ssr_chi2test': (0.8570935881565733, 0.6514551055997179, 2),
'ssr_ftest': (0.386532402501984, 0.6815945120531471, 46.0, 2)},
[<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x112e600f0>,
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x112e601d0>,
array([[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.]])]),
3: ({'lrtest': (0.7772370747510422, 0.8549035149494942, 3),
'params_ftest': (0.22454871567246923, 0.8788077992758596, 43.0, 3),
'ssr_chi2test': (0.7833094732752076, 0.8534548799479462, 3),
'ssr_ftest': (0.2245487156722262, 0.8788077992760295, 43.0, 3)},
[<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x112e604a8>,
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x112e60588>,
array([[0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 1., 0.]])]),
4: ({'lrtest': (1.3610627584390613, 0.8509334643982929, 4),
'params_ftest': (0.28166162853933724, 0.8881254344974849, 40.0, 4),
'ssr_chi2test': (1.3801419798422023, 0.8476389876064325, 4),
'ssr_ftest': (0.28166162853922494, 0.8881254344975573, 40.0, 4)},
[<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x112e608d0>,
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x112e609b0>,
array([[0., 0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1., 0.]])]),
5: ({'lrtest': (2.0200125317383026, 0.8463690492920168, 5),
'params_ftest': (0.3180643028304015, 0.898937290819509, 37.0, 5),
'ssr_chi2test': (2.0631198021437793, 0.8403440941804419, 5),
'ssr_ftest': (0.3180643028304993, 0.8989372908194493, 37.0, 5)},
[<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x112e60d68>,
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x112e60e48>,
array([[0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.]])]),
6: ({'lrtest': (2.4717395459329055, 0.8716169565428891, 6),
'params_ftest': (0.305986579348154, 0.9294594355871434, 34.0, 6),
'ssr_chi2test': (2.5378886875348328, 0.864203451742156, 6),
'ssr_ftest': (0.3059865793481714, 0.9294594355871338, 34.0, 6)},
[<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135b22b0>,
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135b2390>,
array([[0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.]])]),
7: ({'lrtest': (4.073926511361265, 0.7712242441944848, 7),
'params_ftest': (0.41010237300151875, 0.8886520269642009, 31.0, 7),
'ssr_chi2test': (4.259773035693334, 0.7494175827469708, 7),
'ssr_ftest': (0.41010237300153213, 0.888652026964192, 31.0, 7)},
[<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135b2828>,
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135b2908>,
array([[0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.]])]),
8: ({'lrtest': (3.852544899883128, 0.8701761951171116, 8),
'params_ftest': (0.31284289431492973, 0.9546149969647985, 28.0, 8),
'ssr_chi2test': (4.02226578404924, 0.8551089926057871, 8),
'ssr_ftest': (0.3128428943149409, 0.9546149969647937, 28.0, 8)},
[<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135b2e10>,
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135b2ef0>,
array([[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
0.]])]),
9: ({'lrtest': (4.673418156503203, 0.861797801102004, 9),
'params_ftest': (0.3112774620891905, 0.9638254371190023, 25.0, 9),
'ssr_chi2test': (4.930634999491071, 0.8403125555028762, 9),
'ssr_ftest': (0.31127746208908275, 0.9638254371190418, 25.0, 9)},
[<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135b84a8>,
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135b8588>,
array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 1., 0.]])]),
10: ({'lrtest': (13.971594178371333, 0.1742912331527489, 10),
'params_ftest': (0.8446262615147703, 0.5934789392380712, 22.0, 10),
'ssr_chi2test': (16.508604202335512, 0.08596940315964598, 10),
'ssr_ftest': (0.8446262615148401, 0.5934789392380146, 22.0, 10)},
[<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135b8b70>,
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135b8c50>,
array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0.]])]),
11: ({'lrtest': (19.412636371349322, 0.0540769341111939, 11),
'params_ftest': (1.01489660500302, 0.47001825440390665, 19.0, 11),
'ssr_chi2test': (24.678012184810513, 0.01015870344734306, 11),
'ssr_ftest': (1.0148966050030297, 0.4700182544039003, 19.0, 11)},
[<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135bf2e8>,
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135bf3c8>,
array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 1., 0.]])]),
12: ({'lrtest': (19.185239129926913, 0.08415507913451764, 12),
'params_ftest': (0.7955865075914265, 0.6507118692536911, 16.0, 12),
'ssr_chi2test': (24.46428510843607, 0.017575725914136493, 12),
'ssr_ftest': (0.7955865075914169, 0.6507118692536988, 16.0, 12)},
[<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135bfa90>,
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x1135bfb70>,
array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
1., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 1., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 1., 0.]])])}
Conclusion:
Eggs granger cause chickens but chickens do not granger cause eggs!