"""CSP (Constraint Satisfaction Problems) problems and solvers. (Chapter 6)"""
import itertools
import random
import re
import string
from collections import defaultdict, Counter
from functools import reduce
from operator import eq, neg
from sortedcontainers import SortedSet
import search
from utils import argmin_random_tie, count, first, extend
class CSP(search.Problem):
"""This class describes finite-domain Constraint Satisfaction Problems.
A CSP is specified by the following inputs:
variables A list of variables; each is atomic (e.g. int or string).
domains A dict of {var:[possible_value, ...]} entries.
neighbors A dict of {var:[var,...]} that for each variable lists
the other variables that participate in constraints.
constraints A function f(A, a, B, b) that returns true if neighbors
A, B satisfy the constraint when they have values A=a, B=b
In the textbook and in most mathematical definitions, the
constraints are specified as explicit pairs of allowable values,
but the formulation here is easier to express and more compact for
most cases (for example, the n-Queens problem can be represented
in O(n) space using this notation, instead of O(n^4) for the
explicit representation). In terms of describing the CSP as a
problem, that's all there is.
However, the class also supports data structures and methods that help you
solve CSPs by calling a search function on the CSP. Methods and slots are
as follows, where the argument 'a' represents an assignment, which is a
dict of {var:val} entries:
assign(var, val, a) Assign a[var] = val; do other bookkeeping
unassign(var, a) Do del a[var], plus other bookkeeping
nconflicts(var, val, a) Return the number of other variables that
conflict with var=val
curr_domains[var] Slot: remaining consistent values for var
Used by constraint propagation routines.
The following methods are used only by graph_search and tree_search:
actions(state) Return a list of actions
result(state, action) Return a successor of state
goal_test(state) Return true if all constraints satisfied
The following are just for debugging purposes:
nassigns Slot: tracks the number of assignments made
display(a) Print a human-readable representation
"""
def __init__(self, variables, domains, neighbors, constraints):
"""Construct a CSP problem. If variables is empty, it becomes domains.keys()."""
super().__init__(())
variables = variables or list(domains.keys())
self.variables = variables
self.domains = domains
self.neighbors = neighbors
self.constraints = constraints
self.curr_domains = None
self.nassigns = 0
def assign(self, var, val, assignment):
"""Add {var: val} to assignment; Discard the old value if any."""
assignment[var] = val
self.nassigns += 1
def unassign(self, var, assignment):
"""Remove {var: val} from assignment.
DO NOT call this if you are changing a variable to a new value;
just call assign for that."""
if var in assignment:
del assignment[var]
def nconflicts(self, var, val, assignment):
"""Return the number of conflicts var=val has with other variables."""
def conflict(var2):
return var2 in assignment and not self.constraints(var, val, var2, assignment[var2])
return count(conflict(v) for v in self.neighbors[var])
def display(self, assignment):
"""Show a human-readable representation of the CSP."""
print(assignment)
def actions(self, state):
"""Return a list of applicable actions: non conflicting
assignments to an unassigned variable."""
if len(state) == len(self.variables):
return []
else:
assignment = dict(state)
var = first([v for v in self.variables if v not in assignment])
return [(var, val) for val in self.domains[var]
if self.nconflicts(var, val, assignment) == 0]
def result(self, state, action):
"""Perform an action and return the new state."""
(var, val) = action
return state + ((var, val),)
def goal_test(self, state):
"""The goal is to assign all variables, with all constraints satisfied."""
assignment = dict(state)
return (len(assignment) == len(self.variables)
and all(self.nconflicts(variables, assignment[variables], assignment) == 0
for variables in self.variables))
def support_pruning(self):
"""Make sure we can prune values from domains. (We want to pay
for this only if we use it.)"""
if self.curr_domains is None:
self.curr_domains = {v: list(self.domains[v]) for v in self.variables}
def suppose(self, var, value):
"""Start accumulating inferences from assuming var=value."""
self.support_pruning()
removals = [(var, a) for a in self.curr_domains[var] if a != value]
self.curr_domains[var] = [value]
return removals
def prune(self, var, value, removals):
"""Rule out var=value."""
self.curr_domains[var].remove(value)
if removals is not None:
removals.append((var, value))
def choices(self, var):
"""Return all values for var that aren't currently ruled out."""
return (self.curr_domains or self.domains)[var]
def infer_assignment(self):
"""Return the partial assignment implied by the current inferences."""
self.support_pruning()
return {v: self.curr_domains[v][0]
for v in self.variables if 1 == len(self.curr_domains[v])}
def restore(self, removals):
"""Undo a supposition and all inferences from it."""
for B, b in removals:
self.curr_domains[B].append(b)
def conflicted_vars(self, current):
"""Return a list of variables in current assignment that are in conflict"""
return [var for var in self.variables
if self.nconflicts(var, current[var], current) > 0]
def no_arc_heuristic(csp, queue):
return queue
def dom_j_up(csp, queue):
return SortedSet(queue, key=lambda t: neg(len(csp.curr_domains[t[1]])))
def AC3(csp, queue=None, removals=None, arc_heuristic=dom_j_up):
"""[Figure 6.3]"""
if queue is None:
queue = {(Xi, Xk) for Xi in csp.variables for Xk in csp.neighbors[Xi]}
csp.support_pruning()
queue = arc_heuristic(csp, queue)
checks = 0
while queue:
(Xi, Xj) = queue.pop()
revised, checks = revise(csp, Xi, Xj, removals, checks)
if revised:
if not csp.curr_domains[Xi]:
return False, checks
for Xk in csp.neighbors[Xi]:
if Xk != Xj:
queue.add((Xk, Xi))
return True, checks
def revise(csp, Xi, Xj, removals, checks=0):
"""Return true if we remove a value."""
revised = False
for x in csp.curr_domains[Xi][:]:
conflict = True
for y in csp.curr_domains[Xj]:
if csp.constraints(Xi, x, Xj, y):
conflict = False
checks += 1
if not conflict:
break
if conflict:
csp.prune(Xi, x, removals)
revised = True
return revised, checks
def AC3b(csp, queue=None, removals=None, arc_heuristic=dom_j_up):
if queue is None:
queue = {(Xi, Xk) for Xi in csp.variables for Xk in csp.neighbors[Xi]}
csp.support_pruning()
queue = arc_heuristic(csp, queue)
checks = 0
while queue:
(Xi, Xj) = queue.pop()
Si_p, Sj_p, Sj_u, checks = partition(csp, Xi, Xj, checks)
if not Si_p:
return False, checks
revised = False
for x in set(csp.curr_domains[Xi]) - Si_p:
csp.prune(Xi, x, removals)
revised = True
if revised:
for Xk in csp.neighbors[Xi]:
if Xk != Xj:
queue.add((Xk, Xi))
if (Xj, Xi) in queue:
if isinstance(queue, set):
queue.difference_update({(Xj, Xi)})
else:
queue.difference_update((Xj, Xi))
for vj_p in Sj_u:
for vi_p in Si_p:
conflict = True
if csp.constraints(Xj, vj_p, Xi, vi_p):
conflict = False
Sj_p.add(vj_p)
checks += 1
if not conflict:
break
revised = False
for x in set(csp.curr_domains[Xj]) - Sj_p:
csp.prune(Xj, x, removals)
revised = True
if revised:
for Xk in csp.neighbors[Xj]:
if Xk != Xi:
queue.add((Xk, Xj))
return True, checks
def partition(csp, Xi, Xj, checks=0):
Si_p = set()
Sj_p = set()
Sj_u = set(csp.curr_domains[Xj])
for vi_u in csp.curr_domains[Xi]:
conflict = True
for vj_u in Sj_u - Sj_p:
if csp.constraints(Xi, vi_u, Xj, vj_u):
conflict = False
Si_p.add(vi_u)
Sj_p.add(vj_u)
checks += 1
if not conflict:
break
if conflict:
for vj_p in Sj_p:
if csp.constraints(Xi, vi_u, Xj, vj_p):
conflict = False
Si_p.add(vi_u)
checks += 1
if not conflict:
break
return Si_p, Sj_p, Sj_u - Sj_p, checks
def AC4(csp, queue=None, removals=None, arc_heuristic=dom_j_up):
if queue is None:
queue = {(Xi, Xk) for Xi in csp.variables for Xk in csp.neighbors[Xi]}
csp.support_pruning()
queue = arc_heuristic(csp, queue)
support_counter = Counter()
variable_value_pairs_supported = defaultdict(set)
unsupported_variable_value_pairs = []
checks = 0
while queue:
(Xi, Xj) = queue.pop()
revised = False
for x in csp.curr_domains[Xi][:]:
for y in csp.curr_domains[Xj]:
if csp.constraints(Xi, x, Xj, y):
support_counter[(Xi, x, Xj)] += 1
variable_value_pairs_supported[(Xj, y)].add((Xi, x))
checks += 1
if support_counter[(Xi, x, Xj)] == 0:
csp.prune(Xi, x, removals)
revised = True
unsupported_variable_value_pairs.append((Xi, x))
if revised:
if not csp.curr_domains[Xi]:
return False, checks
while unsupported_variable_value_pairs:
Xj, y = unsupported_variable_value_pairs.pop()
for Xi, x in variable_value_pairs_supported[(Xj, y)]:
revised = False
if x in csp.curr_domains[Xi][:]:
support_counter[(Xi, x, Xj)] -= 1
if support_counter[(Xi, x, Xj)] == 0:
csp.prune(Xi, x, removals)
revised = True
unsupported_variable_value_pairs.append((Xi, x))
if revised:
if not csp.curr_domains[Xi]:
return False, checks
return True, checks
def first_unassigned_variable(assignment, csp):
"""The default variable order."""
return first([var for var in csp.variables if var not in assignment])
def mrv(assignment, csp):
"""Minimum-remaining-values heuristic."""
return argmin_random_tie([v for v in csp.variables if v not in assignment],
key=lambda var: num_legal_values(csp, var, assignment))
def num_legal_values(csp, var, assignment):
if csp.curr_domains:
return len(csp.curr_domains[var])
else:
return count(csp.nconflicts(var, val, assignment) == 0 for val in csp.domains[var])
def unordered_domain_values(var, assignment, csp):
"""The default value order."""
return csp.choices(var)
def lcv(var, assignment, csp):
"""Least-constraining-values heuristic."""
return sorted(csp.choices(var), key=lambda val: csp.nconflicts(var, val, assignment))
def no_inference(csp, var, value, assignment, removals):
return True
def forward_checking(csp, var, value, assignment, removals):
"""Prune neighbor values inconsistent with var=value."""
csp.support_pruning()
for B in csp.neighbors[var]:
if B not in assignment:
for b in csp.curr_domains[B][:]:
if not csp.constraints(var, value, B, b):
csp.prune(B, b, removals)
if not csp.curr_domains[B]:
return False
return True
def mac(csp, var, value, assignment, removals, constraint_propagation=AC3b):
"""Maintain arc consistency."""
return constraint_propagation(csp, {(X, var) for X in csp.neighbors[var]}, removals)
def backtracking_search(csp, select_unassigned_variable=first_unassigned_variable,
order_domain_values=unordered_domain_values, inference=no_inference):
"""[Figure 6.5]"""
def backtrack(assignment):
if len(assignment) == len(csp.variables):
return assignment
var = select_unassigned_variable(assignment, csp)
for value in order_domain_values(var, assignment, csp):
if 0 == csp.nconflicts(var, value, assignment):
csp.assign(var, value, assignment)
removals = csp.suppose(var, value)
if inference(csp, var, value, assignment, removals):
result = backtrack(assignment)
if result is not None:
return result
csp.restore(removals)
csp.unassign(var, assignment)
return None
result = backtrack({})
assert result is None or csp.goal_test(result)
return result
def min_conflicts(csp, max_steps=100000):
"""Solve a CSP by stochastic Hill Climbing on the number of conflicts."""
csp.current = current = {}
for var in csp.variables:
val = min_conflicts_value(csp, var, current)
csp.assign(var, val, current)
for i in range(max_steps):
conflicted = csp.conflicted_vars(current)
if not conflicted:
return current
var = random.choice(conflicted)
val = min_conflicts_value(csp, var, current)
csp.assign(var, val, current)
return None
def min_conflicts_value(csp, var, current):
"""Return the value that will give var the least number of conflicts.
If there is a tie, choose at random."""
return argmin_random_tie(csp.domains[var], key=lambda val: csp.nconflicts(var, val, current))
def tree_csp_solver(csp):
"""[Figure 6.11]"""
assignment = {}
root = csp.variables[0]
X, parent = topological_sort(csp, root)
csp.support_pruning()
for Xj in reversed(X[1:]):
if not make_arc_consistent(parent[Xj], Xj, csp):
return None
assignment[root] = csp.curr_domains[root][0]
for Xi in X[1:]:
assignment[Xi] = assign_value(parent[Xi], Xi, csp, assignment)
if not assignment[Xi]:
return None
return assignment
def topological_sort(X, root):
"""Returns the topological sort of X starting from the root.
Input:
X is a list with the nodes of the graph
N is the dictionary with the neighbors of each node
root denotes the root of the graph.
Output:
stack is a list with the nodes topologically sorted
parents is a dictionary pointing to each node's parent
Other:
visited shows the state (visited - not visited) of nodes
"""
neighbors = X.neighbors
visited = defaultdict(lambda: False)
stack = []
parents = {}
build_topological(root, None, neighbors, visited, stack, parents)
return stack, parents
def build_topological(node, parent, neighbors, visited, stack, parents):
"""Build the topological sort and the parents of each node in the graph."""
visited[node] = True
for n in neighbors[node]:
if not visited[n]:
build_topological(n, node, neighbors, visited, stack, parents)
parents[node] = parent
stack.insert(0, node)
def make_arc_consistent(Xj, Xk, csp):
"""Make arc between parent (Xj) and child (Xk) consistent under the csp's constraints,
by removing the possible values of Xj that cause inconsistencies."""
for val1 in csp.domains[Xj]:
keep = False
for val2 in csp.domains[Xk]:
if csp.constraints(Xj, val1, Xk, val2):
keep = True
break
if not keep:
csp.prune(Xj, val1, None)
return csp.curr_domains[Xj]
def assign_value(Xj, Xk, csp, assignment):
"""Assign a value to Xk given Xj's (Xk's parent) assignment.
Return the first value that satisfies the constraints."""
parent_assignment = assignment[Xj]
for val in csp.curr_domains[Xk]:
if csp.constraints(Xj, parent_assignment, Xk, val):
return val
return None
class UniversalDict:
"""A universal dict maps any key to the same value. We use it here
as the domains dict for CSPs in which all variables have the same domain.
>>> d = UniversalDict(42)
>>> d['life']
42
"""
def __init__(self, value): self.value = value
def __getitem__(self, key): return self.value
def __repr__(self): return '{{Any: {0!r}}}'.format(self.value)
def different_values_constraint(A, a, B, b):
"""A constraint saying two neighboring variables must differ in value."""
return a != b
def MapColoringCSP(colors, neighbors):
"""Make a CSP for the problem of coloring a map with different colors
for any two adjacent regions. Arguments are a list of colors, and a
dict of {region: [neighbor,...]} entries. This dict may also be
specified as a string of the form defined by parse_neighbors."""
if isinstance(neighbors, str):
neighbors = parse_neighbors(neighbors)
return CSP(list(neighbors.keys()), UniversalDict(colors), neighbors, different_values_constraint)
def parse_neighbors(neighbors):
"""Convert a string of the form 'X: Y Z; Y: Z' into a dict mapping
regions to neighbors. The syntax is a region name followed by a ':'
followed by zero or more region names, followed by ';', repeated for
each region name. If you say 'X: Y' you don't need 'Y: X'.
>>> parse_neighbors('X: Y Z; Y: Z') == {'Y': ['X', 'Z'], 'X': ['Y', 'Z'], 'Z': ['X', 'Y']}
True
"""
dic = defaultdict(list)
specs = [spec.split(':') for spec in neighbors.split(';')]
for (A, Aneighbors) in specs:
A = A.strip()
for B in Aneighbors.split():
dic[A].append(B)
dic[B].append(A)
return dic
australia_csp = MapColoringCSP(list('RGB'), """SA: WA NT Q NSW V; NT: WA Q; NSW: Q V; T: """)
usa_csp = MapColoringCSP(list('RGBY'),
"""WA: OR ID; OR: ID NV CA; CA: NV AZ; NV: ID UT AZ; ID: MT WY UT;
UT: WY CO AZ; MT: ND SD WY; WY: SD NE CO; CO: NE KA OK NM; NM: OK TX AZ;
ND: MN SD; SD: MN IA NE; NE: IA MO KA; KA: MO OK; OK: MO AR TX;
TX: AR LA; MN: WI IA; IA: WI IL MO; MO: IL KY TN AR; AR: MS TN LA;
LA: MS; WI: MI IL; IL: IN KY; IN: OH KY; MS: TN AL; AL: TN GA FL;
MI: OH IN; OH: PA WV KY; KY: WV VA TN; TN: VA NC GA; GA: NC SC FL;
PA: NY NJ DE MD WV; WV: MD VA; VA: MD DC NC; NC: SC; NY: VT MA CT NJ;
NJ: DE; DE: MD; MD: DC; VT: NH MA; MA: NH RI CT; CT: RI; ME: NH;
HI: ; AK: """)
france_csp = MapColoringCSP(list('RGBY'),
"""AL: LO FC; AQ: MP LI PC; AU: LI CE BO RA LR MP; BO: CE IF CA FC RA
AU; BR: NB PL; CA: IF PI LO FC BO; CE: PL NB NH IF BO AU LI PC; FC: BO
CA LO AL RA; IF: NH PI CA BO CE; LI: PC CE AU MP AQ; LO: CA AL FC; LR:
MP AU RA PA; MP: AQ LI AU LR; NB: NH CE PL BR; NH: PI IF CE NB; NO:
PI; PA: LR RA; PC: PL CE LI AQ; PI: NH NO CA IF; PL: BR NB CE PC; RA:
AU BO FC PA LR""")
def queen_constraint(A, a, B, b):
"""Constraint is satisfied (true) if A, B are really the same variable,
or if they are not in the same row, down diagonal, or up diagonal."""
return A == B or (a != b and A + a != B + b and A - a != B - b)
class NQueensCSP(CSP):
"""
Make a CSP for the nQueens problem for search with min_conflicts.
Suitable for large n, it uses only data structures of size O(n).
Think of placing queens one per column, from left to right.
That means position (x, y) represents (var, val) in the CSP.
The main structures are three arrays to count queens that could conflict:
rows[i] Number of queens in the ith row (i.e. val == i)
downs[i] Number of queens in the \ diagonal
such that their (x, y) coordinates sum to i
ups[i] Number of queens in the / diagonal
such that their (x, y) coordinates have x-y+n-1 = i
We increment/decrement these counts each time a queen is placed/moved from
a row/diagonal. So moving is O(1), as is nconflicts. But choosing
a variable, and a best value for the variable, are each O(n).
If you want, you can keep track of conflicted variables, then variable
selection will also be O(1).
>>> len(backtracking_search(NQueensCSP(8)))
8
"""
def __init__(self, n):
"""Initialize data structures for n Queens."""
CSP.__init__(self, list(range(n)), UniversalDict(list(range(n))),
UniversalDict(list(range(n))), queen_constraint)
self.rows = [0] * n
self.ups = [0] * (2 * n - 1)
self.downs = [0] * (2 * n - 1)
def nconflicts(self, var, val, assignment):
"""The number of conflicts, as recorded with each assignment.
Count conflicts in row and in up, down diagonals. If there
is a queen there, it can't conflict with itself, so subtract 3."""
n = len(self.variables)
c = self.rows[val] + self.downs[var + val] + self.ups[var - val + n - 1]
if assignment.get(var, None) == val:
c -= 3
return c
def assign(self, var, val, assignment):
"""Assign var, and keep track of conflicts."""
old_val = assignment.get(var, None)
if val != old_val:
if old_val is not None:
self.record_conflict(assignment, var, old_val, -1)
self.record_conflict(assignment, var, val, +1)
CSP.assign(self, var, val, assignment)
def unassign(self, var, assignment):
"""Remove var from assignment (if it is there) and track conflicts."""
if var in assignment:
self.record_conflict(assignment, var, assignment[var], -1)
CSP.unassign(self, var, assignment)
def record_conflict(self, assignment, var, val, delta):
"""Record conflicts caused by addition or deletion of a Queen."""
n = len(self.variables)
self.rows[val] += delta
self.downs[var + val] += delta
self.ups[var - val + n - 1] += delta
def display(self, assignment):
"""Print the queens and the nconflicts values (for debugging)."""
n = len(self.variables)
for val in range(n):
for var in range(n):
if assignment.get(var, '') == val:
ch = 'Q'
elif (var + val) % 2 == 0:
ch = '.'
else:
ch = '-'
print(ch, end=' ')
print(' ', end=' ')
for var in range(n):
if assignment.get(var, '') == val:
ch = '*'
else:
ch = ' '
print(str(self.nconflicts(var, val, assignment)) + ch, end=' ')
print()
def flatten(seqs):
return sum(seqs, [])
easy1 = '..3.2.6..9..3.5..1..18.64....81.29..7.......8..67.82....26.95..8..2.3..9..5.1.3..'
harder1 = '4173698.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......'
_R3 = list(range(3))
_CELL = itertools.count().__next__
_BGRID = [[[[_CELL() for x in _R3] for y in _R3] for bx in _R3] for by in _R3]
_BOXES = flatten([list(map(flatten, brow)) for brow in _BGRID])
_ROWS = flatten([list(map(flatten, zip(*brow))) for brow in _BGRID])
_COLS = list(zip(*_ROWS))
_NEIGHBORS = {v: set() for v in flatten(_ROWS)}
for unit in map(set, _BOXES + _ROWS + _COLS):
for v in unit:
_NEIGHBORS[v].update(unit - {v})
class Sudoku(CSP):
"""
A Sudoku problem.
The box grid is a 3x3 array of boxes, each a 3x3 array of cells.
Each cell holds a digit in 1..9. In each box, all digits are
different; the same for each row and column as a 9x9 grid.
>>> e = Sudoku(easy1)
>>> e.display(e.infer_assignment())
. . 3 | . 2 . | 6 . .
9 . . | 3 . 5 | . . 1
. . 1 | 8 . 6 | 4 . .
------+-------+------
. . 8 | 1 . 2 | 9 . .
7 . . | . . . | . . 8
. . 6 | 7 . 8 | 2 . .
------+-------+------
. . 2 | 6 . 9 | 5 . .
8 . . | 2 . 3 | . . 9
. . 5 | . 1 . | 3 . .
>>> AC3(e) # doctest: +ELLIPSIS
(True, ...)
>>> e.display(e.infer_assignment())
4 8 3 | 9 2 1 | 6 5 7
9 6 7 | 3 4 5 | 8 2 1
2 5 1 | 8 7 6 | 4 9 3
------+-------+------
5 4 8 | 1 3 2 | 9 7 6
7 2 9 | 5 6 4 | 1 3 8
1 3 6 | 7 9 8 | 2 4 5
------+-------+------
3 7 2 | 6 8 9 | 5 1 4
8 1 4 | 2 5 3 | 7 6 9
6 9 5 | 4 1 7 | 3 8 2
>>> h = Sudoku(harder1)
>>> backtracking_search(h, select_unassigned_variable=mrv, inference=forward_checking) is not None
True
"""
R3 = _R3
Cell = _CELL
bgrid = _BGRID
boxes = _BOXES
rows = _ROWS
cols = _COLS
neighbors = _NEIGHBORS
def __init__(self, grid):
"""Build a Sudoku problem from a string representing the grid:
the digits 1-9 denote a filled cell, '.' or '0' an empty one;
other characters are ignored."""
squares = iter(re.findall(r'\d|\.', grid))
domains = {var: [ch] if ch in '123456789' else '123456789'
for var, ch in zip(flatten(self.rows), squares)}
for _ in squares:
raise ValueError("Not a Sudoku grid", grid)
CSP.__init__(self, None, domains, self.neighbors, different_values_constraint)
def display(self, assignment):
def show_box(box): return [' '.join(map(show_cell, row)) for row in box]
def show_cell(cell): return str(assignment.get(cell, '.'))
def abut(lines1, lines2): return list(
map(' | '.join, list(zip(lines1, lines2))))
print('\n------+-------+------\n'.join(
'\n'.join(reduce(
abut, map(show_box, brow))) for brow in self.bgrid))
def Zebra():
"""Return an instance of the Zebra Puzzle."""
Colors = 'Red Yellow Blue Green Ivory'.split()
Pets = 'Dog Fox Snails Horse Zebra'.split()
Drinks = 'OJ Tea Coffee Milk Water'.split()
Countries = 'Englishman Spaniard Norwegian Ukranian Japanese'.split()
Smokes = 'Kools Chesterfields Winston LuckyStrike Parliaments'.split()
variables = Colors + Pets + Drinks + Countries + Smokes
domains = {}
for var in variables:
domains[var] = list(range(1, 6))
domains['Norwegian'] = [1]
domains['Milk'] = [3]
neighbors = parse_neighbors("""Englishman: Red;
Spaniard: Dog; Kools: Yellow; Chesterfields: Fox;
Norwegian: Blue; Winston: Snails; LuckyStrike: OJ;
Ukranian: Tea; Japanese: Parliaments; Kools: Horse;
Coffee: Green; Green: Ivory""")
for type in [Colors, Pets, Drinks, Countries, Smokes]:
for A in type:
for B in type:
if A != B:
if B not in neighbors[A]:
neighbors[A].append(B)
if A not in neighbors[B]:
neighbors[B].append(A)
def zebra_constraint(A, a, B, b, recurse=0):
same = (a == b)
next_to = abs(a - b) == 1
if A == 'Englishman' and B == 'Red':
return same
if A == 'Spaniard' and B == 'Dog':
return same
if A == 'Chesterfields' and B == 'Fox':
return next_to
if A == 'Norwegian' and B == 'Blue':
return next_to
if A == 'Kools' and B == 'Yellow':
return same
if A == 'Winston' and B == 'Snails':
return same
if A == 'LuckyStrike' and B == 'OJ':
return same
if A == 'Ukranian' and B == 'Tea':
return same
if A == 'Japanese' and B == 'Parliaments':
return same
if A == 'Kools' and B == 'Horse':
return next_to
if A == 'Coffee' and B == 'Green':
return same
if A == 'Green' and B == 'Ivory':
return a - 1 == b
if recurse == 0:
return zebra_constraint(B, b, A, a, 1)
if ((A in Colors and B in Colors) or
(A in Pets and B in Pets) or
(A in Drinks and B in Drinks) or
(A in Countries and B in Countries) or
(A in Smokes and B in Smokes)):
return not same
raise Exception('error')
return CSP(variables, domains, neighbors, zebra_constraint)
def solve_zebra(algorithm=min_conflicts, **args):
z = Zebra()
ans = algorithm(z, **args)
for h in range(1, 6):
print('House', h, end=' ')
for (var, val) in ans.items():
if val == h:
print(var, end=' ')
print()
return ans['Zebra'], ans['Water'], z.nassigns, ans
class NaryCSP:
"""
A nary-CSP consists of:
domains : a dictionary that maps each variable to its domain
constraints : a list of constraints
variables : a set of variables
var_to_const: a variable to set of constraints dictionary
"""
def __init__(self, domains, constraints):
"""Domains is a variable:domain dictionary
constraints is a list of constraints
"""
self.variables = set(domains)
self.domains = domains
self.constraints = constraints
self.var_to_const = {var: set() for var in self.variables}
for con in constraints:
for var in con.scope:
self.var_to_const[var].add(con)
def __str__(self):
"""String representation of CSP"""
return str(self.domains)
def display(self, assignment=None):
"""More detailed string representation of CSP"""
if assignment is None:
assignment = {}
print(assignment)
def consistent(self, assignment):
"""assignment is a variable:value dictionary
returns True if all of the constraints that can be evaluated
evaluate to True given assignment.
"""
return all(con.holds(assignment)
for con in self.constraints
if all(v in assignment for v in con.scope))
class Constraint:
"""
A Constraint consists of:
scope : a tuple of variables
condition: a function that can applied to a tuple of values
for the variables.
"""
def __init__(self, scope, condition):
self.scope = scope
self.condition = condition
def __repr__(self):
return self.condition.__name__ + str(self.scope)
def holds(self, assignment):
"""Returns the value of Constraint con evaluated in assignment.
precondition: all variables are assigned in assignment
"""
return self.condition(*tuple(assignment[v] for v in self.scope))
def all_diff_constraint(*values):
"""Returns True if all values are different, False otherwise"""
return len(values) is len(set(values))
def is_word_constraint(words):
"""Returns True if the letters concatenated form a word in words, False otherwise"""
def isw(*letters):
return "".join(letters) in words
return isw
def meet_at_constraint(p1, p2):
"""Returns a function that is True when the words meet at the positions (p1, p2), False otherwise"""
def meets(w1, w2):
return w1[p1] == w2[p2]
meets.__name__ = "meet_at(" + str(p1) + ',' + str(p2) + ')'
return meets
def adjacent_constraint(x, y):
"""Returns True if x and y are adjacent numbers, False otherwise"""
return abs(x - y) == 1
def sum_constraint(n):
"""Returns a function that is True when the the sum of all values is n, False otherwise"""
def sumv(*values):
return sum(values) is n
sumv.__name__ = str(n) + "==sum"
return sumv
def is_constraint(val):
"""Returns a function that is True when x is equal to val, False otherwise"""
def isv(x):
return val == x
isv.__name__ = str(val) + "=="
return isv
def ne_constraint(val):
"""Returns a function that is True when x is not equal to val, False otherwise"""
def nev(x):
return val != x
nev.__name__ = str(val) + "!="
return nev
def no_heuristic(to_do):
return to_do
def sat_up(to_do):
return SortedSet(to_do, key=lambda t: 1 / len([var for var in t[1].scope]))
class ACSolver:
"""Solves a CSP with arc consistency and domain splitting"""
def __init__(self, csp):
"""a CSP solver that uses arc consistency
* csp is the CSP to be solved
"""
self.csp = csp
def GAC(self, orig_domains=None, to_do=None, arc_heuristic=sat_up):
"""
Makes this CSP arc-consistent using Generalized Arc Consistency
orig_domains: is the original domains
to_do : is a set of (variable,constraint) pairs
returns the reduced domains (an arc-consistent variable:domain dictionary)
"""
if orig_domains is None:
orig_domains = self.csp.domains
if to_do is None:
to_do = {(var, const) for const in self.csp.constraints for var in const.scope}
else:
to_do = to_do.copy()
domains = orig_domains.copy()
to_do = arc_heuristic(to_do)
checks = 0
while to_do:
var, const = to_do.pop()
other_vars = [ov for ov in const.scope if ov != var]
new_domain = set()
if len(other_vars) == 0:
for val in domains[var]:
if const.holds({var: val}):
new_domain.add(val)
checks += 1
elif len(other_vars) == 1:
other = other_vars[0]
for val in domains[var]:
for other_val in domains[other]:
checks += 1
if const.holds({var: val, other: other_val}):
new_domain.add(val)
break
else:
for val in domains[var]:
holds, checks = self.any_holds(domains, const, {var: val}, other_vars, checks=checks)
if holds:
new_domain.add(val)
if new_domain != domains[var]:
domains[var] = new_domain
if not new_domain:
return False, domains, checks
add_to_do = self.new_to_do(var, const).difference(to_do)
to_do |= add_to_do
return True, domains, checks
def new_to_do(self, var, const):
"""
Returns new elements to be added to to_do after assigning
variable var in constraint const.
"""
return {(nvar, nconst) for nconst in self.csp.var_to_const[var]
if nconst != const
for nvar in nconst.scope
if nvar != var}
def any_holds(self, domains, const, env, other_vars, ind=0, checks=0):
"""
Returns True if Constraint const holds for an assignment
that extends env with the variables in other_vars[ind:]
env is a dictionary
Warning: this has side effects and changes the elements of env
"""
if ind == len(other_vars):
return const.holds(env), checks + 1
else:
var = other_vars[ind]
for val in domains[var]:
env[var] = val
holds, checks = self.any_holds(domains, const, env, other_vars, ind + 1, checks)
if holds:
return True, checks
return False, checks
def domain_splitting(self, domains=None, to_do=None, arc_heuristic=sat_up):
"""
Return a solution to the current CSP or False if there are no solutions
to_do is the list of arcs to check
"""
if domains is None:
domains = self.csp.domains
consistency, new_domains, _ = self.GAC(domains, to_do, arc_heuristic)
if not consistency:
return False
elif all(len(new_domains[var]) == 1 for var in domains):
return {var: first(new_domains[var]) for var in domains}
else:
var = first(x for x in self.csp.variables if len(new_domains[x]) > 1)
if var:
dom1, dom2 = partition_domain(new_domains[var])
new_doms1 = extend(new_domains, var, dom1)
new_doms2 = extend(new_domains, var, dom2)
to_do = self.new_to_do(var, None)
return self.domain_splitting(new_doms1, to_do, arc_heuristic) or \
self.domain_splitting(new_doms2, to_do, arc_heuristic)
def partition_domain(dom):
"""Partitions domain dom into two"""
split = len(dom) // 2
dom1 = set(list(dom)[:split])
dom2 = dom - dom1
return dom1, dom2
class ACSearchSolver(search.Problem):
"""A search problem with arc consistency and domain splitting
A node is a CSP"""
def __init__(self, csp, arc_heuristic=sat_up):
self.cons = ACSolver(csp)
consistency, self.domains, _ = self.cons.GAC(arc_heuristic=arc_heuristic)
if not consistency:
raise Exception('CSP is inconsistent')
self.heuristic = arc_heuristic
super().__init__(self.domains)
def goal_test(self, node):
"""Node is a goal if all domains have 1 element"""
return all(len(node[var]) == 1 for var in node)
def actions(self, state):
var = first(x for x in state if len(state[x]) > 1)
neighs = []
if var:
dom1, dom2 = partition_domain(state[var])
to_do = self.cons.new_to_do(var, None)
for dom in [dom1, dom2]:
new_domains = extend(state, var, dom)
consistency, cons_doms, _ = self.cons.GAC(new_domains, to_do, self.heuristic)
if consistency:
neighs.append(cons_doms)
return neighs
def result(self, state, action):
return action
def ac_solver(csp, arc_heuristic=sat_up):
"""Arc consistency (domain splitting interface)"""
return ACSolver(csp).domain_splitting(arc_heuristic=arc_heuristic)
def ac_search_solver(csp, arc_heuristic=sat_up):
"""Arc consistency (search interface)"""
from search import depth_first_tree_search
solution = None
try:
solution = depth_first_tree_search(ACSearchSolver(csp, arc_heuristic=arc_heuristic)).state
except:
return solution
if solution:
return {var: first(solution[var]) for var in solution}
csp_crossword = NaryCSP({'one_across': {'ant', 'big', 'bus', 'car', 'has'},
'one_down': {'book', 'buys', 'hold', 'lane', 'year'},
'two_down': {'ginger', 'search', 'symbol', 'syntax'},
'three_across': {'book', 'buys', 'hold', 'land', 'year'},
'four_across': {'ant', 'big', 'bus', 'car', 'has'}},
[Constraint(('one_across', 'one_down'), meet_at_constraint(0, 0)),
Constraint(('one_across', 'two_down'), meet_at_constraint(2, 0)),
Constraint(('three_across', 'two_down'), meet_at_constraint(2, 2)),
Constraint(('three_across', 'one_down'), meet_at_constraint(0, 2)),
Constraint(('four_across', 'two_down'), meet_at_constraint(0, 4))])
crossword1 = [['_', '_', '_', '*', '*'],
['_', '*', '_', '*', '*'],
['_', '_', '_', '_', '*'],
['_', '*', '_', '*', '*'],
['*', '*', '_', '_', '_'],
['*', '*', '_', '*', '*']]
words1 = {'ant', 'big', 'bus', 'car', 'has', 'book', 'buys', 'hold',
'lane', 'year', 'ginger', 'search', 'symbol', 'syntax'}
class Crossword(NaryCSP):
def __init__(self, puzzle, words):
domains = {}
constraints = []
for i, line in enumerate(puzzle):
scope = []
for j, element in enumerate(line):
if element == '_':
var = "p" + str(j) + str(i)
domains[var] = list(string.ascii_lowercase)
scope.append(var)
else:
if len(scope) > 1:
constraints.append(Constraint(tuple(scope), is_word_constraint(words)))
scope.clear()
if len(scope) > 1:
constraints.append(Constraint(tuple(scope), is_word_constraint(words)))
puzzle_t = list(map(list, zip(*puzzle)))
for i, line in enumerate(puzzle_t):
scope = []
for j, element in enumerate(line):
if element == '_':
scope.append("p" + str(i) + str(j))
else:
if len(scope) > 1:
constraints.append(Constraint(tuple(scope), is_word_constraint(words)))
scope.clear()
if len(scope) > 1:
constraints.append(Constraint(tuple(scope), is_word_constraint(words)))
super().__init__(domains, constraints)
self.puzzle = puzzle
def display(self, assignment=None):
for i, line in enumerate(self.puzzle):
puzzle = ""
for j, element in enumerate(line):
if element == '*':
puzzle += "[*] "
else:
var = "p" + str(j) + str(i)
if assignment is not None:
if isinstance(assignment[var], set) and len(assignment[var]) == 1:
puzzle += "[" + str(first(assignment[var])).upper() + "] "
elif isinstance(assignment[var], str):
puzzle += "[" + str(assignment[var]).upper() + "] "
else:
puzzle += "[_] "
else:
puzzle += "[_] "
print(puzzle)
kakuro1 = [['*', '*', '*', [6, ''], [3, '']],
['*', [4, ''], [3, 3], '_', '_'],
[['', 10], '_', '_', '_', '_'],
[['', 3], '_', '_', '*', '*']]
kakuro2 = [
['*', [10, ''], [13, ''], '*'],
[['', 3], '_', '_', [13, '']],
[['', 12], '_', '_', '_'],
[['', 21], '_', '_', '_']]
kakuro3 = [
['*', [17, ''], [28, ''], '*', [42, ''], [22, '']],
[['', 9], '_', '_', [31, 14], '_', '_'],
[['', 20], '_', '_', '_', '_', '_'],
['*', ['', 30], '_', '_', '_', '_'],
['*', [22, 24], '_', '_', '_', '*'],
[['', 25], '_', '_', '_', '_', [11, '']],
[['', 20], '_', '_', '_', '_', '_'],
[['', 14], '_', '_', ['', 17], '_', '_']]
kakuro4 = [
['*', '*', '*', '*', '*', [4, ''], [24, ''], [11, ''], '*', '*', '*', [11, ''], [17, ''], '*', '*'],
['*', '*', '*', [17, ''], [11, 12], '_', '_', '_', '*', '*', [24, 10], '_', '_', [11, ''], '*'],
['*', [4, ''], [16, 26], '_', '_', '_', '_', '_', '*', ['', 20], '_', '_', '_', '_', [16, '']],
[['', 20], '_', '_', '_', '_', [24, 13], '_', '_', [16, ''], ['', 12], '_', '_', [23, 10], '_', '_'],
[['', 10], '_', '_', [24, 12], '_', '_', [16, 5], '_', '_', [16, 30], '_', '_', '_', '_', '_'],
['*', '*', [3, 26], '_', '_', '_', '_', ['', 12], '_', '_', [4, ''], [16, 14], '_', '_', '*'],
['*', ['', 8], '_', '_', ['', 15], '_', '_', [34, 26], '_', '_', '_', '_', '_', '*', '*'],
['*', ['', 11], '_', '_', [3, ''], [17, ''], ['', 14], '_', '_', ['', 8], '_', '_', [7, ''], [17, ''], '*'],
['*', '*', '*', [23, 10], '_', '_', [3, 9], '_', '_', [4, ''], [23, ''], ['', 13], '_', '_', '*'],
['*', '*', [10, 26], '_', '_', '_', '_', '_', ['', 7], '_', '_', [30, 9], '_', '_', '*'],
['*', [17, 11], '_', '_', [11, ''], [24, 8], '_', '_', [11, 21], '_', '_', '_', '_', [16, ''], [17, '']],
[['', 29], '_', '_', '_', '_', '_', ['', 7], '_', '_', [23, 14], '_', '_', [3, 17], '_', '_'],
[['', 10], '_', '_', [3, 10], '_', '_', '*', ['', 8], '_', '_', [4, 25], '_', '_', '_', '_'],
['*', ['', 16], '_', '_', '_', '_', '*', ['', 23], '_', '_', '_', '_', '_', '*', '*'],
['*', '*', ['', 6], '_', '_', '*', '*', ['', 15], '_', '_', '_', '*', '*', '*', '*']]
class Kakuro(NaryCSP):
def __init__(self, puzzle):
variables = []
for i, line in enumerate(puzzle):
for j, element in enumerate(line):
if element == '_':
var1 = str(i)
if len(var1) == 1:
var1 = "0" + var1
var2 = str(j)
if len(var2) == 1:
var2 = "0" + var2
variables.append("X" + var1 + var2)
domains = {}
for var in variables:
domains[var] = set(range(1, 10))
constraints = []
for i, line in enumerate(puzzle):
for j, element in enumerate(line):
if element != '_' and element != '*':
if element[0] != '':
x = []
for k in range(i + 1, len(puzzle)):
if puzzle[k][j] != '_':
break
var1 = str(k)
if len(var1) == 1:
var1 = "0" + var1
var2 = str(j)
if len(var2) == 1:
var2 = "0" + var2
x.append("X" + var1 + var2)
constraints.append(Constraint(x, sum_constraint(element[0])))
constraints.append(Constraint(x, all_diff_constraint))
if element[1] != '':
x = []
for k in range(j + 1, len(puzzle[i])):
if puzzle[i][k] != '_':
break
var1 = str(i)
if len(var1) == 1:
var1 = "0" + var1
var2 = str(k)
if len(var2) == 1:
var2 = "0" + var2
x.append("X" + var1 + var2)
constraints.append(Constraint(x, sum_constraint(element[1])))
constraints.append(Constraint(x, all_diff_constraint))
super().__init__(domains, constraints)
self.puzzle = puzzle
def display(self, assignment=None):
for i, line in enumerate(self.puzzle):
puzzle = ""
for j, element in enumerate(line):
if element == '*':
puzzle += "[*]\t"
elif element == '_':
var1 = str(i)
if len(var1) == 1:
var1 = "0" + var1
var2 = str(j)
if len(var2) == 1:
var2 = "0" + var2
var = "X" + var1 + var2
if assignment is not None:
if isinstance(assignment[var], set) and len(assignment[var]) == 1:
puzzle += "[" + str(first(assignment[var])) + "]\t"
elif isinstance(assignment[var], int):
puzzle += "[" + str(assignment[var]) + "]\t"
else:
puzzle += "[_]\t"
else:
puzzle += "[_]\t"
else:
puzzle += str(element[0]) + "\\" + str(element[1]) + "\t"
print(puzzle)
two_two_four = NaryCSP({'T': set(range(1, 10)), 'F': set(range(1, 10)),
'W': set(range(0, 10)), 'O': set(range(0, 10)), 'U': set(range(0, 10)), 'R': set(range(0, 10)),
'C1': set(range(0, 2)), 'C2': set(range(0, 2)), 'C3': set(range(0, 2))},
[Constraint(('T', 'F', 'W', 'O', 'U', 'R'), all_diff_constraint),
Constraint(('O', 'R', 'C1'), lambda o, r, c1: o + o == r + 10 * c1),
Constraint(('W', 'U', 'C1', 'C2'), lambda w, u, c1, c2: c1 + w + w == u + 10 * c2),
Constraint(('T', 'O', 'C2', 'C3'), lambda t, o, c2, c3: c2 + t + t == o + 10 * c3),
Constraint(('F', 'C3'), eq)])
send_more_money = NaryCSP({'S': set(range(1, 10)), 'M': set(range(1, 10)),
'E': set(range(0, 10)), 'N': set(range(0, 10)), 'D': set(range(0, 10)),
'O': set(range(0, 10)), 'R': set(range(0, 10)), 'Y': set(range(0, 10)),
'C1': set(range(0, 2)), 'C2': set(range(0, 2)), 'C3': set(range(0, 2)),
'C4': set(range(0, 2))},
[Constraint(('S', 'E', 'N', 'D', 'M', 'O', 'R', 'Y'), all_diff_constraint),
Constraint(('D', 'E', 'Y', 'C1'), lambda d, e, y, c1: d + e == y + 10 * c1),
Constraint(('N', 'R', 'E', 'C1', 'C2'), lambda n, r, e, c1, c2: c1 + n + r == e + 10 * c2),
Constraint(('E', 'O', 'N', 'C2', 'C3'), lambda e, o, n, c2, c3: c2 + e + o == n + 10 * c3),
Constraint(('S', 'M', 'O', 'C3', 'C4'), lambda s, m, o, c3, c4: c3 + s + m == o + 10 * c4),
Constraint(('M', 'C4'), eq)])