import os.path
from tkinter import *
from tkinter import ttk
import search
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
LARGE_FONT = ('Verdana', 12)
EXTRA_LARGE_FONT = ('Consolas', 36, 'bold')
canvas_width = 800
canvas_height = 600
black = '#000000'
white = '#ffffff'
p_blue = '#042533'
lp_blue = '#0c394c'
target = 'Genetic Algorithm'
max_population = 100
mutation_rate = 0.1
f_thres = len(target)
ngen = 1200
generation = 0
u_case = [chr(x) for x in range(65, 91)]
l_case = [chr(x) for x in range(97, 123)]
punctuations1 = [chr(x) for x in range(33, 48)]
punctuations2 = [chr(x) for x in range(58, 65)]
punctuations3 = [chr(x) for x in range(91, 97)]
numerals = [chr(x) for x in range(48, 58)]
gene_pool = []
gene_pool.extend(u_case)
gene_pool.extend(l_case)
gene_pool.append(' ')
def update_max_population(slider_value):
global max_population
max_population = slider_value
def update_mutation_rate(slider_value):
global mutation_rate
mutation_rate = slider_value
def update_f_thres(slider_value):
global f_thres
f_thres = slider_value
def update_ngen(slider_value):
global ngen
ngen = slider_value
def fitness_fn(_list):
fitness = 0
phrase = ''.join(_list)
for i in range(len(phrase)):
if target[i] == phrase[i]:
fitness += 1
return fitness
def raise_frame(frame, init=False, update_target=False, target_entry=None, f_thres_slider=None):
frame.tkraise()
global target
if update_target and target_entry is not None:
target = target_entry.get()
f_thres_slider.config(to=len(target))
if init:
population = search.init_population(max_population, gene_pool, len(target))
genetic_algorithm_stepwise(population)
root = Tk()
f1 = Frame(root)
f2 = Frame(root)
for frame in (f1, f2):
frame.grid(row=0, column=0, sticky='news')
target_entry = Entry(f1, font=('Consolas 46 bold'), exportselection=0, foreground=p_blue, justify=CENTER)
target_entry.insert(0, target)
target_entry.pack(expand=YES, side=TOP, fill=X, padx=50)
target_entry.focus_force()
max_population_slider = Scale(f1, from_=3, to=1000, orient=HORIZONTAL, label='Max population',
command=lambda value: update_max_population(int(value)))
max_population_slider.set(max_population)
max_population_slider.pack(expand=YES, side=TOP, fill=X, padx=40)
mutation_rate_slider = Scale(f1, from_=0, to=1, orient=HORIZONTAL, label='Mutation rate', resolution=0.0001,
command=lambda value: update_mutation_rate(float(value)))
mutation_rate_slider.set(mutation_rate)
mutation_rate_slider.pack(expand=YES, side=TOP, fill=X, padx=40)
f_thres_slider = Scale(f1, from_=0, to=len(target), orient=HORIZONTAL, label='Fitness threshold',
command=lambda value: update_f_thres(int(value)))
f_thres_slider.set(f_thres)
f_thres_slider.pack(expand=YES, side=TOP, fill=X, padx=40)
ngen_slider = Scale(f1, from_=1, to=5000, orient=HORIZONTAL, label='Max number of generations',
command=lambda value: update_ngen(int(value)))
ngen_slider.set(ngen)
ngen_slider.pack(expand=YES, side=TOP, fill=X, padx=40)
button = ttk.Button(f1, text='RUN',
command=lambda: raise_frame(f2, init=True, update_target=True, target_entry=target_entry,
f_thres_slider=f_thres_slider)).pack(side=BOTTOM, pady=50)
canvas = Canvas(f2, width=canvas_width, height=canvas_height)
canvas.pack(expand=YES, fill=BOTH, padx=20, pady=15)
button = ttk.Button(f2, text='EXIT', command=lambda: raise_frame(f1)).pack(side=BOTTOM, pady=15)
def genetic_algorithm_stepwise(population):
root.title('Genetic Algorithm')
for generation in range(ngen):
population = [
search.mutate(search.recombine(*search.select(2, population, fitness_fn)), gene_pool, mutation_rate) for i
in range(len(population))]
current_best = ''.join(max(population, key=fitness_fn))
members = [''.join(x) for x in population][:48]
canvas.delete('all')
canvas.create_text(canvas_width / 2, 40, fill=p_blue, font='Consolas 46 bold', text=current_best)
for i in range(len(members) // 3):
canvas.create_text((canvas_width * .175), (canvas_height * .25 + (25 * i)), fill=lp_blue,
font='Consolas 16', text=members[3 * i])
canvas.create_text((canvas_width * .500), (canvas_height * .25 + (25 * i)), fill=lp_blue,
font='Consolas 16', text=members[3 * i + 1])
canvas.create_text((canvas_width * .825), (canvas_height * .25 + (25 * i)), fill=lp_blue,
font='Consolas 16', text=members[3 * i + 2])
canvas.create_text((canvas_width * .5), (canvas_height * 0.95), fill=p_blue, font='Consolas 18 bold',
text=f'Generation {generation}')
scaling_factor = fitness_fn(current_best) / len(target)
canvas.create_rectangle(canvas_width * 0.1, 90, canvas_width * 0.9, 100, outline=p_blue)
canvas.create_rectangle(canvas_width * 0.1, 90, canvas_width * 0.1 + scaling_factor * canvas_width * 0.8, 100,
fill=lp_blue)
canvas.update()
fittest_individual = search.fitness_threshold(fitness_fn, f_thres, population)
if fittest_individual:
break
raise_frame(f1)
root.mainloop()