"""Representations and Inference for Logic (Chapters 7-10)
Covers both Propositional and First-Order Logic. First we have four
important data types:
KB Abstract class holds a knowledge base of logical expressions
KB_Agent Abstract class subclasses agents.Agent
Expr A logical expression, imported from utils.py
substitution Implemented as a dictionary of var:value pairs, {x:1, y:x}
Be careful: some functions take an Expr as argument, and some take a KB.
Logical expressions can be created with Expr or expr, imported from utils, TODO
or with expr, which adds the capability to write a string that uses
the connectives ==>, <==, <=>, or <=/=>. But be careful: these have the
operator precedence of commas; you may need to add parents to make precedence work.
See logic.ipynb for examples.
Then we implement various functions for doing logical inference:
pl_true Evaluate a propositional logical sentence in a model
tt_entails Say if a statement is entailed by a KB
pl_resolution Do resolution on propositional sentences
dpll_satisfiable See if a propositional sentence is satisfiable
WalkSAT Try to find a solution for a set of clauses
And a few other functions:
to_cnf Convert to conjunctive normal form
unify Do unification of two FOL sentences
diff, simp Symbolic differentiation and simplification
"""
import itertools
import random
from collections import defaultdict
from agents import Agent, Glitter, Bump, Stench, Breeze, Scream
from search import astar_search, PlanRoute
from utils4e import remove_all, unique, first, probability, isnumber, issequence, Expr, expr, subexpressions
class KB:
"""
A knowledge base to which you can tell and ask sentences.
To create a KB, subclass this class and implement tell, ask_generator, and retract.
Ask_generator:
For a Propositional Logic KB, ask(P & Q) returns True or False, but for an
FOL KB, something like ask(Brother(x, y)) might return many substitutions
such as {x: Cain, y: Abel}, {x: Abel, y: Cain}, {x: George, y: Jeb}, etc.
So ask_generator generates these one at a time, and ask either returns the
first one or returns False.
"""
def __init__(self, sentence=None):
raise NotImplementedError
def tell(self, sentence):
"""Add the sentence to the KB."""
raise NotImplementedError
def ask(self, query):
"""Return a substitution that makes the query true, or, failing that, return False."""
return first(self.ask_generator(query), default=False)
def ask_generator(self, query):
"""Yield all the substitutions that make query true."""
raise NotImplementedError
def retract(self, sentence):
"""Remove sentence from the KB."""
raise NotImplementedError
class PropKB(KB):
"""A KB for propositional logic. Inefficient, with no indexing."""
def __init__(self, sentence=None):
self.clauses = []
if sentence:
self.tell(sentence)
def tell(self, sentence):
"""Add the sentence's clauses to the KB."""
self.clauses.extend(conjuncts(to_cnf(sentence)))
def ask_generator(self, query):
"""Yield the empty substitution {} if KB entails query; else no results."""
if tt_entails(Expr('&', *self.clauses), query):
yield {}
def ask_if_true(self, query):
"""Return True if the KB entails query, else return False."""
for _ in self.ask_generator(query):
return True
return False
def retract(self, sentence):
"""Remove the sentence's clauses from the KB."""
for c in conjuncts(to_cnf(sentence)):
if c in self.clauses:
self.clauses.remove(c)
def KB_AgentProgram(KB):
"""A generic logical knowledge-based agent program. [Figure 7.1]"""
steps = itertools.count()
def program(percept):
t = next(steps)
KB.tell(make_percept_sentence(percept, t))
action = KB.ask(make_action_query(t))
KB.tell(make_action_sentence(action, t))
return action
def make_percept_sentence(percept, t):
return Expr("Percept")(percept, t)
def make_action_query(t):
return expr("ShouldDo(action, {})".format(t))
def make_action_sentence(action, t):
return Expr("Did")(action[expr('action')], t)
return program
def facing_east(time):
return Expr('FacingEast', time)
def facing_west(time):
return Expr('FacingWest', time)
def facing_north(time):
return Expr('FacingNorth', time)
def facing_south(time):
return Expr('FacingSouth', time)
def wumpus(x, y):
return Expr('W', x, y)
def pit(x, y):
return Expr('P', x, y)
def breeze(x, y):
return Expr('B', x, y)
def stench(x, y):
return Expr('S', x, y)
def wumpus_alive(time):
return Expr('WumpusAlive', time)
def have_arrow(time):
return Expr('HaveArrow', time)
def percept_stench(time):
return Expr('Stench', time)
def percept_breeze(time):
return Expr('Breeze', time)
def percept_glitter(time):
return Expr('Glitter', time)
def percept_bump(time):
return Expr('Bump', time)
def percept_scream(time):
return Expr('Scream', time)
def move_forward(time):
return Expr('Forward', time)
def shoot(time):
return Expr('Shoot', time)
def turn_left(time):
return Expr('TurnLeft', time)
def turn_right(time):
return Expr('TurnRight', time)
def ok_to_move(x, y, time):
return Expr('OK', x, y, time)
def location(x, y, time=None):
if time is None:
return Expr('L', x, y)
else:
return Expr('L', x, y, time)
def implies(lhs, rhs):
return Expr('==>', lhs, rhs)
def equiv(lhs, rhs):
return Expr('<=>', lhs, rhs)
def new_disjunction(sentences):
t = sentences[0]
for i in range(1, len(sentences)):
t |= sentences[i]
return t
def is_symbol(s):
"""A string s is a symbol if it starts with an alphabetic char.
>>> is_symbol('R2D2')
True
"""
return isinstance(s, str) and s[:1].isalpha()
def is_var_symbol(s):
"""A logic variable symbol is an initial-lowercase string.
>>> is_var_symbol('EXE')
False
"""
return is_symbol(s) and s[0].islower()
def is_prop_symbol(s):
"""A proposition logic symbol is an initial-uppercase string.
>>> is_prop_symbol('exe')
False
"""
return is_symbol(s) and s[0].isupper()
def variables(s):
"""Return a set of the variables in expression s.
>>> variables(expr('F(x, x) & G(x, y) & H(y, z) & R(A, z, 2)')) == {x, y, z}
True
"""
return {x for x in subexpressions(s) if is_variable(x)}
def is_definite_clause(s):
"""
Returns True for exprs s of the form A & B & ... & C ==> D,
where all literals are positive. In clause form, this is
~A | ~B | ... | ~C | D, where exactly one clause is positive.
>>> is_definite_clause(expr('Farmer(Mac)'))
True
"""
if is_symbol(s.op):
return True
elif s.op == '==>':
antecedent, consequent = s.args
return (is_symbol(consequent.op) and
all(is_symbol(arg.op) for arg in conjuncts(antecedent)))
else:
return False
def parse_definite_clause(s):
"""Return the antecedents and the consequent of a definite clause."""
assert is_definite_clause(s)
if is_symbol(s.op):
return [], s
else:
antecedent, consequent = s.args
return conjuncts(antecedent), consequent
A, B, C, D, E, F, G, P, Q, x, y, z = map(Expr, 'ABCDEFGPQxyz')
def tt_entails(kb, alpha):
"""
Does kb entail the sentence alpha? Use truth tables. For propositional
kb's and sentences. [Figure 7.10]. Note that the 'kb' should be an
Expr which is a conjunction of clauses.
>>> tt_entails(expr('P & Q'), expr('Q'))
True
"""
assert not variables(alpha)
symbols = list(prop_symbols(kb & alpha))
return tt_check_all(kb, alpha, symbols, {})
def tt_check_all(kb, alpha, symbols, model):
"""Auxiliary routine to implement tt_entails."""
if not symbols:
if pl_true(kb, model):
result = pl_true(alpha, model)
assert result in (True, False)
return result
else:
return True
else:
P, rest = symbols[0], symbols[1:]
return (tt_check_all(kb, alpha, rest, extend(model, P, True)) and
tt_check_all(kb, alpha, rest, extend(model, P, False)))
def prop_symbols(x):
"""Return the set of all propositional symbols in x."""
if not isinstance(x, Expr):
return set()
elif is_prop_symbol(x.op):
return {x}
else:
return {symbol for arg in x.args for symbol in prop_symbols(arg)}
def constant_symbols(x):
"""Return the set of all constant symbols in x."""
if not isinstance(x, Expr):
return set()
elif is_prop_symbol(x.op) and not x.args:
return {x}
else:
return {symbol for arg in x.args for symbol in constant_symbols(arg)}
def predicate_symbols(x):
"""
Return a set of (symbol_name, arity) in x.
All symbols (even functional) with arity > 0 are considered.
"""
if not isinstance(x, Expr) or not x.args:
return set()
pred_set = {(x.op, len(x.args))} if is_prop_symbol(x.op) else set()
pred_set.update({symbol for arg in x.args for symbol in predicate_symbols(arg)})
return pred_set
def tt_true(s):
"""Is a propositional sentence a tautology?
>>> tt_true('P | ~P')
True
"""
s = expr(s)
return tt_entails(True, s)
def pl_true(exp, model={}):
"""
Return True if the propositional logic expression is true in the model,
and False if it is false. If the model does not specify the value for
every proposition, this may return None to indicate 'not obvious';
this may happen even when the expression is tautological.
>>> pl_true(P, {}) is None
True
"""
if exp in (True, False):
return exp
op, args = exp.op, exp.args
if is_prop_symbol(op):
return model.get(exp)
elif op == '~':
p = pl_true(args[0], model)
if p is None:
return None
else:
return not p
elif op == '|':
result = False
for arg in args:
p = pl_true(arg, model)
if p is True:
return True
if p is None:
result = None
return result
elif op == '&':
result = True
for arg in args:
p = pl_true(arg, model)
if p is False:
return False
if p is None:
result = None
return result
p, q = args
if op == '==>':
return pl_true(~p | q, model)
elif op == '<==':
return pl_true(p | ~q, model)
pt = pl_true(p, model)
if pt is None:
return None
qt = pl_true(q, model)
if qt is None:
return None
if op == '<=>':
return pt == qt
elif op == '^':
return pt != qt
else:
raise ValueError("illegal operator in logic expression" + str(exp))
def to_cnf(s):
"""Convert a propositional logical sentence to conjunctive normal form.
That is, to the form ((A | ~B | ...) & (B | C | ...) & ...) [p. 253]
>>> to_cnf('~(B | C)')
(~B & ~C)
"""
s = expr(s)
if isinstance(s, str):
s = expr(s)
s = eliminate_implications(s)
s = move_not_inwards(s)
return distribute_and_over_or(s)
def eliminate_implications(s):
"""Change implications into equivalent form with only &, |, and ~ as logical operators."""
s = expr(s)
if not s.args or is_symbol(s.op):
return s
args = list(map(eliminate_implications, s.args))
a, b = args[0], args[-1]
if s.op == '==>':
return b | ~a
elif s.op == '<==':
return a | ~b
elif s.op == '<=>':
return (a | ~b) & (b | ~a)
elif s.op == '^':
assert len(args) == 2
return (a & ~b) | (~a & b)
else:
assert s.op in ('&', '|', '~')
return Expr(s.op, *args)
def move_not_inwards(s):
"""Rewrite sentence s by moving negation sign inward.
>>> move_not_inwards(~(A | B))
(~A & ~B)
"""
s = expr(s)
if s.op == '~':
def NOT(b):
return move_not_inwards(~b)
a = s.args[0]
if a.op == '~':
return move_not_inwards(a.args[0])
if a.op == '&':
return associate('|', list(map(NOT, a.args)))
if a.op == '|':
return associate('&', list(map(NOT, a.args)))
return s
elif is_symbol(s.op) or not s.args:
return s
else:
return Expr(s.op, *list(map(move_not_inwards, s.args)))
def distribute_and_over_or(s):
"""Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in CNF.
>>> distribute_and_over_or((A & B) | C)
((A | C) & (B | C))
"""
s = expr(s)
if s.op == '|':
s = associate('|', s.args)
if s.op != '|':
return distribute_and_over_or(s)
if len(s.args) == 0:
return False
if len(s.args) == 1:
return distribute_and_over_or(s.args[0])
conj = first(arg for arg in s.args if arg.op == '&')
if not conj:
return s
others = [a for a in s.args if a is not conj]
rest = associate('|', others)
return associate('&', [distribute_and_over_or(c | rest)
for c in conj.args])
elif s.op == '&':
return associate('&', list(map(distribute_and_over_or, s.args)))
else:
return s
def associate(op, args):
"""Given an associative op, return an expression with the same
meaning as Expr(op, *args), but flattened -- that is, with nested
instances of the same op promoted to the top level.
>>> associate('&', [(A&B),(B|C),(B&C)])
(A & B & (B | C) & B & C)
>>> associate('|', [A|(B|(C|(A&B)))])
(A | B | C | (A & B))
"""
args = dissociate(op, args)
if len(args) == 0:
return _op_identity[op]
elif len(args) == 1:
return args[0]
else:
return Expr(op, *args)
_op_identity = {'&': True, '|': False, '+': 0, '*': 1}
def dissociate(op, args):
"""Given an associative op, return a flattened list result such
that Expr(op, *result) means the same as Expr(op, *args).
>>> dissociate('&', [A & B])
[A, B]
"""
result = []
def collect(subargs):
for arg in subargs:
if arg.op == op:
collect(arg.args)
else:
result.append(arg)
collect(args)
return result
def conjuncts(s):
"""Return a list of the conjuncts in the sentence s.
>>> conjuncts(A & B)
[A, B]
>>> conjuncts(A | B)
[(A | B)]
"""
return dissociate('&', [s])
def disjuncts(s):
"""Return a list of the disjuncts in the sentence s.
>>> disjuncts(A | B)
[A, B]
>>> disjuncts(A & B)
[(A & B)]
"""
return dissociate('|', [s])
def pl_resolution(KB, alpha):
"""
Propositional-logic resolution: say if alpha follows from KB. [Figure 7.12]
>>> pl_resolution(horn_clauses_KB, A)
True
"""
clauses = KB.clauses + conjuncts(to_cnf(~alpha))
new = set()
while True:
n = len(clauses)
pairs = [(clauses[i], clauses[j])
for i in range(n) for j in range(i + 1, n)]
for (ci, cj) in pairs:
resolvents = pl_resolve(ci, cj)
if False in resolvents:
return True
new = new.union(set(resolvents))
if new.issubset(set(clauses)):
return False
for c in new:
if c not in clauses:
clauses.append(c)
def pl_resolve(ci, cj):
"""Return all clauses that can be obtained by resolving clauses ci and cj."""
clauses = []
for di in disjuncts(ci):
for dj in disjuncts(cj):
if di == ~dj or ~di == dj:
dnew = unique(remove_all(di, disjuncts(ci)) +
remove_all(dj, disjuncts(cj)))
clauses.append(associate('|', dnew))
return clauses
class PropDefiniteKB(PropKB):
"""A KB of propositional definite clauses."""
def tell(self, sentence):
"""Add a definite clause to this KB."""
assert is_definite_clause(sentence), "Must be definite clause"
self.clauses.append(sentence)
def ask_generator(self, query):
"""Yield the empty substitution if KB implies query; else nothing."""
if pl_fc_entails(self.clauses, query):
yield {}
def retract(self, sentence):
self.clauses.remove(sentence)
def clauses_with_premise(self, p):
"""Return a list of the clauses in KB that have p in their premise.
This could be cached away for O(1) speed, but we'll recompute it."""
return [c for c in self.clauses
if c.op == '==>' and p in conjuncts(c.args[0])]
def pl_fc_entails(KB, q):
"""Use forward chaining to see if a PropDefiniteKB entails symbol q.
[Figure 7.15]
>>> pl_fc_entails(horn_clauses_KB, expr('Q'))
True
"""
count = {c: len(conjuncts(c.args[0]))
for c in KB.clauses
if c.op == '==>'}
inferred = defaultdict(bool)
agenda = [s for s in KB.clauses if is_prop_symbol(s.op)]
while agenda:
p = agenda.pop()
if p == q:
return True
if not inferred[p]:
inferred[p] = True
for c in KB.clauses_with_premise(p):
count[c] -= 1
if count[c] == 0:
agenda.append(c.args[1])
return False
""" [Figure 7.13]
Simple inference in a wumpus world example
"""
wumpus_world_inference = expr("(B11 <=> (P12 | P21)) & ~B11")
""" [Figure 7.16]
Propositional Logic Forward Chaining example
"""
horn_clauses_KB = PropDefiniteKB()
for s in "P==>Q; (L&M)==>P; (B&L)==>M; (A&P)==>L; (A&B)==>L; A;B".split(';'):
horn_clauses_KB.tell(expr(s))
"""
Definite clauses KB example
"""
definite_clauses_KB = PropDefiniteKB()
for clause in ['(B & F)==>E', '(A & E & F)==>G', '(B & C)==>F', '(A & B)==>D', '(E & F)==>H', '(H & I)==>J', 'A', 'B',
'C']:
definite_clauses_KB.tell(expr(clause))
def dpll_satisfiable(s):
"""Check satisfiability of a propositional sentence.
This differs from the book code in two ways: (1) it returns a model
rather than True when it succeeds; this is more useful. (2) The
function find_pure_symbol is passed a list of unknown clauses, rather
than a list of all clauses and the model; this is more efficient.
>>> dpll_satisfiable(A |'<=>'| B) == {A: True, B: True}
True
"""
clauses = conjuncts(to_cnf(s))
symbols = list(prop_symbols(s))
return dpll(clauses, symbols, {})
def dpll(clauses, symbols, model):
"""See if the clauses are true in a partial model."""
unknown_clauses = []
for c in clauses:
val = pl_true(c, model)
if val is False:
return False
if val is not True:
unknown_clauses.append(c)
if not unknown_clauses:
return model
P, value = find_pure_symbol(symbols, unknown_clauses)
if P:
return dpll(clauses, remove_all(P, symbols), extend(model, P, value))
P, value = find_unit_clause(clauses, model)
if P:
return dpll(clauses, remove_all(P, symbols), extend(model, P, value))
if not symbols:
raise TypeError("Argument should be of the type Expr.")
P, symbols = symbols[0], symbols[1:]
return (dpll(clauses, symbols, extend(model, P, True)) or
dpll(clauses, symbols, extend(model, P, False)))
def find_pure_symbol(symbols, clauses):
"""
Find a symbol and its value if it appears only as a positive literal
(or only as a negative) in clauses.
>>> find_pure_symbol([A, B, C], [A|~B,~B|~C,C|A])
(A, True)
"""
for s in symbols:
found_pos, found_neg = False, False
for c in clauses:
if not found_pos and s in disjuncts(c):
found_pos = True
if not found_neg and ~s in disjuncts(c):
found_neg = True
if found_pos != found_neg:
return s, found_pos
return None, None
def find_unit_clause(clauses, model):
"""
Find a forced assignment if possible from a clause with only 1
variable not bound in the model.
>>> find_unit_clause([A|B|C, B|~C, ~A|~B], {A:True})
(B, False)
"""
for clause in clauses:
P, value = unit_clause_assign(clause, model)
if P:
return P, value
return None, None
def unit_clause_assign(clause, model):
"""Return a single variable/value pair that makes clause true in
the model, if possible.
>>> unit_clause_assign(A|B|C, {A:True})
(None, None)
>>> unit_clause_assign(B|~C, {A:True})
(None, None)
>>> unit_clause_assign(~A|~B, {A:True})
(B, False)
"""
P, value = None, None
for literal in disjuncts(clause):
sym, positive = inspect_literal(literal)
if sym in model:
if model[sym] == positive:
return None, None
elif P:
return None, None
else:
P, value = sym, positive
return P, value
def inspect_literal(literal):
"""The symbol in this literal, and the value it should take to
make the literal true.
>>> inspect_literal(P)
(P, True)
>>> inspect_literal(~P)
(P, False)
"""
if literal.op == '~':
return literal.args[0], False
else:
return literal, True
def WalkSAT(clauses, p=0.5, max_flips=10000):
"""
Checks for satisfiability of all clauses by randomly flipping values of variables
>>> WalkSAT([A & ~A], 0.5, 100) is None
True
"""
symbols = {sym for clause in clauses for sym in prop_symbols(clause)}
model = {s: random.choice([True, False]) for s in symbols}
for i in range(max_flips):
satisfied, unsatisfied = [], []
for clause in clauses:
(satisfied if pl_true(clause, model) else unsatisfied).append(clause)
if not unsatisfied:
return model
clause = random.choice(unsatisfied)
if probability(p):
sym = random.choice(list(prop_symbols(clause)))
else:
def sat_count(sym):
model[sym] = not model[sym]
count = len([clause for clause in clauses if pl_true(clause, model)])
model[sym] = not model[sym]
return count
sym = max(prop_symbols(clause), key=sat_count)
model[sym] = not model[sym]
return None
class WumpusKB(PropKB):
"""
Create a Knowledge Base that contains the atemporal "Wumpus physics" and temporal rules with time zero.
"""
def __init__(self, dimrow):
super().__init__()
self.dimrow = dimrow
self.tell(~wumpus(1, 1))
self.tell(~pit(1, 1))
for y in range(1, dimrow + 1):
for x in range(1, dimrow + 1):
pits_in = list()
wumpus_in = list()
if x > 1:
pits_in.append(pit(x - 1, y))
wumpus_in.append(wumpus(x - 1, y))
if y < dimrow:
pits_in.append(pit(x, y + 1))
wumpus_in.append(wumpus(x, y + 1))
if x < dimrow:
pits_in.append(pit(x + 1, y))
wumpus_in.append(wumpus(x + 1, y))
if y > 1:
pits_in.append(pit(x, y - 1))
wumpus_in.append(wumpus(x, y - 1))
self.tell(equiv(breeze(x, y), new_disjunction(pits_in)))
self.tell(equiv(stench(x, y), new_disjunction(wumpus_in)))
wumpus_at_least = list()
for x in range(1, dimrow + 1):
for y in range(1, dimrow + 1):
wumpus_at_least.append(wumpus(x, y))
self.tell(new_disjunction(wumpus_at_least))
for i in range(1, dimrow + 1):
for j in range(1, dimrow + 1):
for u in range(1, dimrow + 1):
for v in range(1, dimrow + 1):
if i != u or j != v:
self.tell(~wumpus(i, j) | ~wumpus(u, v))
self.tell(location(1, 1, 0))
for i in range(1, dimrow + 1):
for j in range(1, dimrow + 1):
self.tell(implies(location(i, j, 0), equiv(percept_breeze(0), breeze(i, j))))
self.tell(implies(location(i, j, 0), equiv(percept_stench(0), stench(i, j))))
if i != 1 or j != 1:
self.tell(~location(i, j, 0))
self.tell(wumpus_alive(0))
self.tell(have_arrow(0))
self.tell(facing_east(0))
self.tell(~facing_north(0))
self.tell(~facing_south(0))
self.tell(~facing_west(0))
def make_action_sentence(self, action, time):
actions = [move_forward(time), shoot(time), turn_left(time), turn_right(time)]
for a in actions:
if action is a:
self.tell(action)
else:
self.tell(~a)
def make_percept_sentence(self, percept, time):
flags = [0, 0, 0, 0, 0]
if isinstance(percept, Glitter):
flags[0] = 1
self.tell(percept_glitter(time))
elif isinstance(percept, Bump):
flags[1] = 1
self.tell(percept_bump(time))
elif isinstance(percept, Stench):
flags[2] = 1
self.tell(percept_stench(time))
elif isinstance(percept, Breeze):
flags[3] = 1
self.tell(percept_breeze(time))
elif isinstance(percept, Scream):
flags[4] = 1
self.tell(percept_scream(time))
for i in range(len(flags)):
if flags[i] == 0:
if i == 0:
self.tell(~percept_glitter(time))
elif i == 1:
self.tell(~percept_bump(time))
elif i == 2:
self.tell(~percept_stench(time))
elif i == 3:
self.tell(~percept_breeze(time))
elif i == 4:
self.tell(~percept_scream(time))
def add_temporal_sentences(self, time):
if time == 0:
return
t = time - 1
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
self.tell(implies(location(i, j, time), equiv(percept_breeze(time), breeze(i, j))))
self.tell(implies(location(i, j, time), equiv(percept_stench(time), stench(i, j))))
s = list()
s.append(
equiv(
location(i, j, time), location(i, j, time) & ~move_forward(time) | percept_bump(time)))
if i != 1:
s.append(location(i - 1, j, t) & facing_east(t) & move_forward(t))
if i != self.dimrow:
s.append(location(i + 1, j, t) & facing_west(t) & move_forward(t))
if j != 1:
s.append(location(i, j - 1, t) & facing_north(t) & move_forward(t))
if j != self.dimrow:
s.append(location(i, j + 1, t) & facing_south(t) & move_forward(t))
self.tell(new_disjunction(s))
self.tell(
equiv(ok_to_move(i, j, time), ~pit(i, j) & ~wumpus(i, j) & wumpus_alive(time))
)
a = facing_north(t) & turn_right(t)
b = facing_south(t) & turn_left(t)
c = facing_east(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_east(time), a | b | c)
self.tell(s)
a = facing_north(t) & turn_left(t)
b = facing_south(t) & turn_right(t)
c = facing_west(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_west(time), a | b | c)
self.tell(s)
a = facing_east(t) & turn_left(t)
b = facing_west(t) & turn_right(t)
c = facing_north(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_north(time), a | b | c)
self.tell(s)
a = facing_west(t) & turn_left(t)
b = facing_east(t) & turn_right(t)
c = facing_south(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_south(time), a | b | c)
self.tell(s)
self.tell(equiv(move_forward(t), ~turn_right(t) & ~turn_left(t)))
self.tell(equiv(have_arrow(time), have_arrow(t) & ~shoot(t)))
self.tell(equiv(wumpus_alive(time), wumpus_alive(t) & ~percept_scream(time)))
def ask_if_true(self, query):
return pl_resolution(self, query)
class WumpusPosition:
def __init__(self, x, y, orientation):
self.X = x
self.Y = y
self.orientation = orientation
def get_location(self):
return self.X, self.Y
def set_location(self, x, y):
self.X = x
self.Y = y
def get_orientation(self):
return self.orientation
def set_orientation(self, orientation):
self.orientation = orientation
def __eq__(self, other):
if (other.get_location() == self.get_location() and
other.get_orientation() == self.get_orientation()):
return True
else:
return False
class HybridWumpusAgent(Agent):
"""An agent for the wumpus world that does logical inference. [Figure 7.20]"""
def __init__(self, dimentions):
self.dimrow = dimentions
self.kb = WumpusKB(self.dimrow)
self.t = 0
self.plan = list()
self.current_position = WumpusPosition(1, 1, 'UP')
super().__init__(self.execute)
def execute(self, percept):
self.kb.make_percept_sentence(percept, self.t)
self.kb.add_temporal_sentences(self.t)
temp = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if self.kb.ask_if_true(location(i, j, self.t)):
temp.append(i)
temp.append(j)
if self.kb.ask_if_true(facing_north(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'UP')
elif self.kb.ask_if_true(facing_south(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'DOWN')
elif self.kb.ask_if_true(facing_west(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'LEFT')
elif self.kb.ask_if_true(facing_east(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'RIGHT')
safe_points = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if self.kb.ask_if_true(ok_to_move(i, j, self.t)):
safe_points.append([i, j])
if self.kb.ask_if_true(percept_glitter(self.t)):
goals = list()
goals.append([1, 1])
self.plan.append('Grab')
actions = self.plan_route(self.current_position, goals, safe_points)
self.plan.extend(actions)
self.plan.append('Climb')
if len(self.plan) == 0:
unvisited = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
for k in range(self.t):
if self.kb.ask_if_true(location(i, j, k)):
unvisited.append([i, j])
unvisited_and_safe = list()
for u in unvisited:
for s in safe_points:
if u not in unvisited_and_safe and s == u:
unvisited_and_safe.append(u)
temp = self.plan_route(self.current_position, unvisited_and_safe, safe_points)
self.plan.extend(temp)
if len(self.plan) == 0 and self.kb.ask_if_true(have_arrow(self.t)):
possible_wumpus = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if not self.kb.ask_if_true(wumpus(i, j)):
possible_wumpus.append([i, j])
temp = self.plan_shot(self.current_position, possible_wumpus, safe_points)
self.plan.extend(temp)
if len(self.plan) == 0:
not_unsafe = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if not self.kb.ask_if_true(ok_to_move(i, j, self.t)):
not_unsafe.append([i, j])
temp = self.plan_route(self.current_position, not_unsafe, safe_points)
self.plan.extend(temp)
if len(self.plan) == 0:
start = list()
start.append([1, 1])
temp = self.plan_route(self.current_position, start, safe_points)
self.plan.extend(temp)
self.plan.append('Climb')
action = self.plan[0]
self.plan = self.plan[1:]
self.kb.make_action_sentence(action, self.t)
self.t += 1
return action
def plan_route(self, current, goals, allowed):
problem = PlanRoute(current, goals, allowed, self.dimrow)
return astar_search(problem).solution()
def plan_shot(self, current, goals, allowed):
shooting_positions = set()
for loc in goals:
x = loc[0]
y = loc[1]
for i in range(1, self.dimrow + 1):
if i < x:
shooting_positions.add(WumpusPosition(i, y, 'EAST'))
if i > x:
shooting_positions.add(WumpusPosition(i, y, 'WEST'))
if i < y:
shooting_positions.add(WumpusPosition(x, i, 'NORTH'))
if i > y:
shooting_positions.add(WumpusPosition(x, i, 'SOUTH'))
orientations = ['EAST', 'WEST', 'NORTH', 'SOUTH']
for loc in goals:
for orientation in orientations:
shooting_positions.remove(WumpusPosition(loc[0], loc[1], orientation))
actions = list()
actions.extend(self.plan_route(current, shooting_positions, allowed))
actions.append('Shoot')
return actions
def SAT_plan(init, transition, goal, t_max, SAT_solver=dpll_satisfiable):
"""Converts a planning problem to Satisfaction problem by translating it to a cnf sentence.
[Figure 7.22]
>>> transition = {'A': {'Left': 'A', 'Right': 'B'}, 'B': {'Left': 'A', 'Right': 'C'}, 'C': {'Left': 'B', 'Right': 'C'}}
>>> SAT_plan('A', transition, 'C', 2) is None
True
"""
def translate_to_SAT(init, transition, goal, time):
clauses = []
states = [state for state in transition]
state_counter = itertools.count()
for s in states:
for t in range(time + 1):
state_sym[s, t] = Expr("State_{}".format(next(state_counter)))
clauses.append(state_sym[init, 0])
clauses.append(state_sym[goal, time])
transition_counter = itertools.count()
for s in states:
for action in transition[s]:
s_ = transition[s][action]
for t in range(time):
action_sym[s, action, t] = Expr(
"Transition_{}".format(next(transition_counter)))
clauses.append(action_sym[s, action, t] | '==>' | state_sym[s, t])
clauses.append(action_sym[s, action, t] | '==>' | state_sym[s_, t + 1])
for t in range(time + 1):
clauses.append(associate('|', [state_sym[s, t] for s in states]))
for s in states:
for s_ in states[states.index(s) + 1:]:
clauses.append((~state_sym[s, t]) | (~state_sym[s_, t]))
for t in range(time):
transitions_t = [tr for tr in action_sym if tr[2] == t]
clauses.append(associate('|', [action_sym[tr] for tr in transitions_t]))
for tr in transitions_t:
for tr_ in transitions_t[transitions_t.index(tr) + 1:]:
clauses.append(~action_sym[tr] | ~action_sym[tr_])
return associate('&', clauses)
def extract_solution(model):
true_transitions = [t for t in action_sym if model[action_sym[t]]]
true_transitions.sort(key=lambda x: x[2])
return [action for s, action, time in true_transitions]
for t in range(t_max):
state_sym = {}
action_sym = {}
cnf = translate_to_SAT(init, transition, goal, t)
model = SAT_solver(cnf)
if model is not False:
return extract_solution(model)
return None
def unify(x, y, s={}):
"""Unify expressions x,y with substitution s; return a substitution that
would make x,y equal, or None if x,y can not unify. x and y can be
variables (e.g. Expr('x')), constants, lists, or Exprs. [Figure 9.1]
>>> unify(x, 3, {})
{x: 3}
"""
if s is None:
return None
elif x == y:
return s
elif is_variable(x):
return unify_var(x, y, s)
elif is_variable(y):
return unify_var(y, x, s)
elif isinstance(x, Expr) and isinstance(y, Expr):
return unify(x.args, y.args, unify(x.op, y.op, s))
elif isinstance(x, str) or isinstance(y, str):
return None
elif issequence(x) and issequence(y) and len(x) == len(y):
if not x:
return s
return unify(x[1:], y[1:], unify(x[0], y[0], s))
else:
return None
def is_variable(x):
"""A variable is an Expr with no args and a lowercase symbol as the op."""
return isinstance(x, Expr) and not x.args and x.op[0].islower()
def unify_var(var, x, s):
if var in s:
return unify(s[var], x, s)
elif x in s:
return unify(var, s[x], s)
elif occur_check(var, x, s):
return None
else:
return extend(s, var, x)
def occur_check(var, x, s):
"""Return true if variable var occurs anywhere in x
(or in subst(s, x), if s has a binding for x)."""
if var == x:
return True
elif is_variable(x) and x in s:
return occur_check(var, s[x], s)
elif isinstance(x, Expr):
return (occur_check(var, x.op, s) or
occur_check(var, x.args, s))
elif isinstance(x, (list, tuple)):
return first(e for e in x if occur_check(var, e, s))
else:
return False
def extend(s, var, val):
"""Copy the substitution s and extend it by setting var to val; return copy.
>>> extend({x: 1}, y, 2) == {x: 1, y: 2}
True
"""
s2 = s.copy()
s2[var] = val
return s2
class FolKB(KB):
"""A knowledge base consisting of first-order definite clauses.
>>> kb0 = FolKB([expr('Farmer(Mac)'), expr('Rabbit(Pete)'),
... expr('(Rabbit(r) & Farmer(f)) ==> Hates(f, r)')])
>>> kb0.tell(expr('Rabbit(Flopsie)'))
>>> kb0.retract(expr('Rabbit(Pete)'))
>>> kb0.ask(expr('Hates(Mac, x)'))[x]
Flopsie
>>> kb0.ask(expr('Wife(Pete, x)'))
False
"""
def __init__(self, initial_clauses=None):
self.clauses = []
if initial_clauses:
for clause in initial_clauses:
self.tell(clause)
def tell(self, sentence):
if is_definite_clause(sentence):
self.clauses.append(sentence)
else:
raise Exception("Not a definite clause: {}".format(sentence))
def ask_generator(self, query):
return fol_bc_ask(self, query)
def retract(self, sentence):
self.clauses.remove(sentence)
def fetch_rules_for_goal(self, goal):
return self.clauses
def fol_fc_ask(KB, alpha):
"""A simple forward-chaining algorithm. [Figure 9.3]"""
kb_consts = list({c for clause in KB.clauses for c in constant_symbols(clause)})
def enum_subst(p):
query_vars = list({v for clause in p for v in variables(clause)})
for assignment_list in itertools.product(kb_consts, repeat=len(query_vars)):
theta = {x: y for x, y in zip(query_vars, assignment_list)}
yield theta
for q in KB.clauses:
phi = unify(q, alpha, {})
if phi is not None:
yield phi
while True:
new = []
for rule in KB.clauses:
p, q = parse_definite_clause(rule)
for theta in enum_subst(p):
if set(subst(theta, p)).issubset(set(KB.clauses)):
q_ = subst(theta, q)
if all([unify(x, q_, {}) is None for x in KB.clauses + new]):
new.append(q_)
phi = unify(q_, alpha, {})
if phi is not None:
yield phi
if not new:
break
for clause in new:
KB.tell(clause)
return None
def subst(s, x):
"""Substitute the substitution s into the expression x.
>>> subst({x: 42, y:0}, F(x) + y)
(F(42) + 0)
"""
if isinstance(x, list):
return [subst(s, xi) for xi in x]
elif isinstance(x, tuple):
return tuple([subst(s, xi) for xi in x])
elif not isinstance(x, Expr):
return x
elif is_var_symbol(x.op):
return s.get(x, x)
else:
return Expr(x.op, *[subst(s, arg) for arg in x.args])
def standardize_variables(sentence, dic=None):
"""Replace all the variables in sentence with new variables."""
if dic is None:
dic = {}
if not isinstance(sentence, Expr):
return sentence
elif is_var_symbol(sentence.op):
if sentence in dic:
return dic[sentence]
else:
v = Expr('v_{}'.format(next(standardize_variables.counter)))
dic[sentence] = v
return v
else:
return Expr(sentence.op,
*[standardize_variables(a, dic) for a in sentence.args])
standardize_variables.counter = itertools.count()
def fol_bc_ask(KB, query):
"""A simple backward-chaining algorithm for first-order logic. [Figure 9.6]
KB should be an instance of FolKB, and query an atomic sentence."""
return fol_bc_or(KB, query, {})
def fol_bc_or(KB, goal, theta):
for rule in KB.fetch_rules_for_goal(goal):
lhs, rhs = parse_definite_clause(standardize_variables(rule))
for theta1 in fol_bc_and(KB, lhs, unify(rhs, goal, theta)):
yield theta1
def fol_bc_and(KB, goals, theta):
if theta is None:
pass
elif not goals:
yield theta
else:
first, rest = goals[0], goals[1:]
for theta1 in fol_bc_or(KB, subst(theta, first), theta):
for theta2 in fol_bc_and(KB, rest, theta1):
yield theta2
wumpus_kb = PropKB()
P11, P12, P21, P22, P31, B11, B21 = expr('P11, P12, P21, P22, P31, B11, B21')
wumpus_kb.tell(~P11)
wumpus_kb.tell(B11 | '<=>' | (P12 | P21))
wumpus_kb.tell(B21 | '<=>' | (P11 | P22 | P31))
wumpus_kb.tell(~B11)
wumpus_kb.tell(B21)
test_kb = FolKB(
map(expr, ['Farmer(Mac)',
'Rabbit(Pete)',
'Mother(MrsMac, Mac)',
'Mother(MrsRabbit, Pete)',
'(Rabbit(r) & Farmer(f)) ==> Hates(f, r)',
'(Mother(m, c)) ==> Loves(m, c)',
'(Mother(m, r) & Rabbit(r)) ==> Rabbit(m)',
'(Farmer(f)) ==> Human(f)',
'(Mother(m, h) & Human(h)) ==> Human(m)']))
crime_kb = FolKB(
map(expr, ['(American(x) & Weapon(y) & Sells(x, y, z) & Hostile(z)) ==> Criminal(x)',
'Owns(Nono, M1)',
'Missile(M1)',
'(Missile(x) & Owns(Nono, x)) ==> Sells(West, x, Nono)',
'Missile(x) ==> Weapon(x)',
'Enemy(x, America) ==> Hostile(x)',
'American(West)',
'Enemy(Nono, America)']))
def diff(y, x):
"""Return the symbolic derivative, dy/dx, as an Expr.
However, you probably want to simplify the results with simp.
>>> diff(x * x, x)
((x * 1) + (x * 1))
"""
if y == x:
return 1
elif not y.args:
return 0
else:
u, op, v = y.args[0], y.op, y.args[-1]
if op == '+':
return diff(u, x) + diff(v, x)
elif op == '-' and len(y.args) == 1:
return -diff(u, x)
elif op == '-':
return diff(u, x) - diff(v, x)
elif op == '*':
return u * diff(v, x) + v * diff(u, x)
elif op == '/':
return (v * diff(u, x) - u * diff(v, x)) / (v * v)
elif op == '**' and isnumber(x.op):
return (v * u ** (v - 1) * diff(u, x))
elif op == '**':
return (v * u ** (v - 1) * diff(u, x) +
u ** v * Expr('log')(u) * diff(v, x))
elif op == 'log':
return diff(u, x) / u
else:
raise ValueError("Unknown op: {} in diff({}, {})".format(op, y, x))
def simp(x):
"""Simplify the expression x."""
if isnumber(x) or not x.args:
return x
args = list(map(simp, x.args))
u, op, v = args[0], x.op, args[-1]
if op == '+':
if v == 0:
return u
if u == 0:
return v
if u == v:
return 2 * u
if u == -v or v == -u:
return 0
elif op == '-' and len(args) == 1:
if u.op == '-' and len(u.args) == 1:
return u.args[0]
elif op == '-':
if v == 0:
return u
if u == 0:
return -v
if u == v:
return 0
if u == -v or v == -u:
return 0
elif op == '*':
if u == 0 or v == 0:
return 0
if u == 1:
return v
if v == 1:
return u
if u == v:
return u ** 2
elif op == '/':
if u == 0:
return 0
if v == 0:
return Expr('Undefined')
if u == v:
return 1
if u == -v or v == -u:
return 0
elif op == '**':
if u == 0:
return 0
if v == 0:
return 1
if u == 1:
return 1
if v == 1:
return u
elif op == 'log':
if u == 1:
return 0
else:
raise ValueError("Unknown op: " + op)
return Expr(op, *args)
def d(y, x):
"""Differentiate and then simplify.
>>> d(x * x - x, x)
((2 * x) - 1)
"""
return simp(diff(y, x))