Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
att
GitHub Repository: att/ast
Path: blob/master/src/lib/libast/uwin/crypt.c
1811 views
1
#include "FEATURE/uwin"
2
3
#if !_UWIN || _lib_crypt
4
5
void _STUB_crypt(){}
6
7
#else
8
9
/*
10
* Copyright (c) 1989, 1993
11
* The Regents of the University of California. All rights reserved.
12
*
13
* This code is derived from software contributed to Berkeley by
14
* Tom Truscott.
15
*
16
* Redistribution and use in source and binary forms, with or without
17
* modification, are permitted provided that the following conditions
18
* are met:
19
* 1. Redistributions of source code must retain the above copyright
20
* notice, this list of conditions and the following disclaimer.
21
* 2. Redistributions in binary form must reproduce the above copyright
22
* notice, this list of conditions and the following disclaimer in the
23
* documentation and/or other materials provided with the distribution.
24
* 3. Neither the name of the University nor the names of its contributors
25
* may be used to endorse or promote products derived from this software
26
* without specific prior written permission.
27
*
28
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38
* SUCH DAMAGE.
39
*/
40
41
#if defined(LIBC_SCCS) && !defined(lint)
42
static char sccsid[] = "@(#)crypt.c 8.1 (Berkeley) 6/4/93";
43
#endif /* LIBC_SCCS and not lint */
44
45
#define crypt ______crypt
46
#define encrypt ______encrypt
47
#define setkey ______setkey
48
49
/* #include <unistd.h> */
50
#include <stdio.h>
51
#include <limits.h>
52
#include <pwd.h>
53
54
#undef crypt
55
#undef encrypt
56
#undef setkey
57
58
#ifndef _PASSWORD_EFMT1
59
#define _PASSWORD_EFMT1 '-'
60
#endif
61
62
#if defined(__EXPORT__)
63
#define extern __EXPORT__
64
#endif
65
66
/*
67
* UNIX password, and DES, encryption.
68
* By Tom Truscott, [email protected],
69
* from algorithms by Robert W. Baldwin and James Gillogly.
70
*
71
* References:
72
* "Mathematical Cryptology for Computer Scientists and Mathematicians,"
73
* by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
74
*
75
* "Password Security: A Case History," R. Morris and Ken Thompson,
76
* Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
77
*
78
* "DES will be Totally Insecure within Ten Years," M.E. Hellman,
79
* IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
80
*/
81
82
/* ===== Configuration ==================== */
83
84
/*
85
* define "MUST_ALIGN" if your compiler cannot load/store
86
* long integers at arbitrary (e.g. odd) memory locations.
87
* (Either that or never pass unaligned addresses to des_cipher!)
88
*/
89
#if !defined(vax)
90
#define MUST_ALIGN
91
#endif
92
93
#ifdef CHAR_BITS
94
#if CHAR_BITS != 8
95
#error C_block structure assumes 8 bit characters
96
#endif
97
#endif
98
99
/*
100
* define "LONG_IS_32_BITS" only if sizeof(long)==4.
101
* This avoids use of bit fields (your compiler may be sloppy with them).
102
*/
103
#if !defined(cray)
104
#define LONG_IS_32_BITS
105
#endif
106
107
/*
108
* define "B64" to be the declaration for a 64 bit integer.
109
* XXX this feature is currently unused, see "endian" comment below.
110
*/
111
#if defined(cray)
112
#define B64 long
113
#endif
114
#if defined(convex)
115
#define B64 long long
116
#endif
117
118
/*
119
* define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
120
* of lookup tables. This speeds up des_setkey() and des_cipher(), but has
121
* little effect on crypt().
122
*/
123
#if defined(notdef)
124
#define LARGEDATA
125
#endif
126
127
/* ==================================== */
128
129
/*
130
* Cipher-block representation (Bob Baldwin):
131
*
132
* DES operates on groups of 64 bits, numbered 1..64 (sigh). One
133
* representation is to store one bit per byte in an array of bytes. Bit N of
134
* the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
135
* Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
136
* first byte, 9..16 in the second, and so on. The DES spec apparently has
137
* bit 1 in the MSB of the first byte, but that is particularly noxious so we
138
* bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
139
* the MSB of the first byte. Specifically, the 64-bit input data and key are
140
* converted to LSB format, and the output 64-bit block is converted back into
141
* MSB format.
142
*
143
* DES operates internally on groups of 32 bits which are expanded to 48 bits
144
* by permutation E and shrunk back to 32 bits by the S boxes. To speed up
145
* the computation, the expansion is applied only once, the expanded
146
* representation is maintained during the encryption, and a compression
147
* permutation is applied only at the end. To speed up the S-box lookups,
148
* the 48 bits are maintained as eight 6 bit groups, one per byte, which
149
* directly feed the eight S-boxes. Within each byte, the 6 bits are the
150
* most significant ones. The low two bits of each byte are zero. (Thus,
151
* bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
152
* first byte in the eight byte representation, bit 2 of the 48 bit value is
153
* the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
154
* used, in which the output is the 64 bit result of an S-box lookup which
155
* has been permuted by P and expanded by E, and is ready for use in the next
156
* iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
157
* lookup. Since each byte in the 48 bit path is a multiple of four, indexed
158
* lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
159
* "salt" are also converted to this 8*(6+2) format. The SPE table size is
160
* 8*64*8 = 4K bytes.
161
*
162
* To speed up bit-parallel operations (such as XOR), the 8 byte
163
* representation is "union"ed with 32 bit values "i0" and "i1", and, on
164
* machines which support it, a 64 bit value "b64". This data structure,
165
* "C_block", has two problems. First, alignment restrictions must be
166
* honored. Second, the byte-order (e.g. little-endian or big-endian) of
167
* the architecture becomes visible.
168
*
169
* The byte-order problem is unfortunate, since on the one hand it is good
170
* to have a machine-independent C_block representation (bits 1..8 in the
171
* first byte, etc.), and on the other hand it is good for the LSB of the
172
* first byte to be the LSB of i0. We cannot have both these things, so we
173
* currently use the "little-endian" representation and avoid any multi-byte
174
* operations that depend on byte order. This largely precludes use of the
175
* 64-bit datatype since the relative order of i0 and i1 are unknown. It
176
* also inhibits grouping the SPE table to look up 12 bits at a time. (The
177
* 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
178
* high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
179
* other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
180
* requires a 128 kilobyte table, so perhaps this is not a big loss.
181
*
182
* Permutation representation (Jim Gillogly):
183
*
184
* A transformation is defined by its effect on each of the 8 bytes of the
185
* 64-bit input. For each byte we give a 64-bit output that has the bits in
186
* the input distributed appropriately. The transformation is then the OR
187
* of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
188
* each transformation. Unless LARGEDATA is defined, however, a more compact
189
* table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
190
* The smaller table uses 16*16*8 = 2K bytes for each transformation. This
191
* is slower but tolerable, particularly for password encryption in which
192
* the SPE transformation is iterated many times. The small tables total 9K
193
* bytes, the large tables total 72K bytes.
194
*
195
* The transformations used are:
196
* IE3264: MSB->LSB conversion, initial permutation, and expansion.
197
* This is done by collecting the 32 even-numbered bits and applying
198
* a 32->64 bit transformation, and then collecting the 32 odd-numbered
199
* bits and applying the same transformation. Since there are only
200
* 32 input bits, the IE3264 transformation table is half the size of
201
* the usual table.
202
* CF6464: Compression, final permutation, and LSB->MSB conversion.
203
* This is done by two trivial 48->32 bit compressions to obtain
204
* a 64-bit block (the bit numbering is given in the "CIFP" table)
205
* followed by a 64->64 bit "cleanup" transformation. (It would
206
* be possible to group the bits in the 64-bit block so that 2
207
* identical 32->32 bit transformations could be used instead,
208
* saving a factor of 4 in space and possibly 2 in time, but
209
* byte-ordering and other complications rear their ugly head.
210
* Similar opportunities/problems arise in the key schedule
211
* transforms.)
212
* PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
213
* This admittedly baroque 64->64 bit transformation is used to
214
* produce the first code (in 8*(6+2) format) of the key schedule.
215
* PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
216
* It would be possible to define 15 more transformations, each
217
* with a different rotation, to generate the entire key schedule.
218
* To save space, however, we instead permute each code into the
219
* next by using a transformation that "undoes" the PC2 permutation,
220
* rotates the code, and then applies PC2. Unfortunately, PC2
221
* transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
222
* invertible. We get around that problem by using a modified PC2
223
* which retains the 8 otherwise-lost bits in the unused low-order
224
* bits of each byte. The low-order bits are cleared when the
225
* codes are stored into the key schedule.
226
* PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
227
* This is faster than applying PC2ROT[0] twice,
228
*
229
* The Bell Labs "salt" (Bob Baldwin):
230
*
231
* The salting is a simple permutation applied to the 48-bit result of E.
232
* Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
233
* i+24 of the result are swapped. The salt is thus a 24 bit number, with
234
* 16777216 possible values. (The original salt was 12 bits and could not
235
* swap bits 13..24 with 36..48.)
236
*
237
* It is possible, but ugly, to warp the SPE table to account for the salt
238
* permutation. Fortunately, the conditional bit swapping requires only
239
* about four machine instructions and can be done on-the-fly with about an
240
* 8% performance penalty.
241
*/
242
243
typedef union {
244
unsigned char b[8];
245
struct {
246
#if defined(LONG_IS_32_BITS)
247
/* long is often faster than a 32-bit bit field */
248
long i0;
249
long i1;
250
#else
251
long i0: 32;
252
long i1: 32;
253
#endif
254
} b32;
255
#if defined(B64)
256
B64 b64;
257
#endif
258
} C_block;
259
260
/*
261
* Convert twenty-four-bit long in host-order
262
* to six bits (and 2 low-order zeroes) per char little-endian format.
263
*/
264
#define TO_SIX_BIT(rslt, src) { \
265
C_block cvt; \
266
cvt.b[0] = (unsigned char) src; src >>= 6; \
267
cvt.b[1] = (unsigned char) src; src >>= 6; \
268
cvt.b[2] = (unsigned char) src; src >>= 6; \
269
cvt.b[3] = (unsigned char) src; \
270
rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
271
}
272
273
/*
274
* These macros may someday permit efficient use of 64-bit integers.
275
*/
276
#define ZERO(d,d0,d1) d0 = 0, d1 = 0
277
#define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
278
#define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
279
#define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
280
#define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
281
#define DCL_BLOCK(d,d0,d1) long d0, d1
282
/* proto(1) workarounds -- barf */
283
#define DCL_BLOCK_D DCL_BLOCK(D,D0,D1)
284
#define DCL_BLOCK_K DCL_BLOCK(K,K0,K1)
285
286
#if defined(LARGEDATA)
287
/* Waste memory like crazy. Also, do permutations in line */
288
#define LGCHUNKBITS 3
289
#define CHUNKBITS (1<<LGCHUNKBITS)
290
#define PERM6464(d,d0,d1,cpp,p) \
291
LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
292
OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
293
OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
294
OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
295
OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
296
OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
297
OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
298
OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
299
#define PERM3264(d,d0,d1,cpp,p) \
300
LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
301
OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
302
OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
303
OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
304
#else
305
/* "small data" */
306
#define LGCHUNKBITS 2
307
#define CHUNKBITS (1<<LGCHUNKBITS)
308
#define PERM6464(d,d0,d1,cpp,p) \
309
{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
310
#define PERM3264(d,d0,d1,cpp,p) \
311
{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
312
313
static void permute(unsigned char *cp, C_block *out, register C_block *p, int chars_in) {
314
register DCL_BLOCK_D;
315
register C_block *tp;
316
register int t;
317
318
ZERO(D,D0,D1);
319
do {
320
t = *cp++;
321
tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
322
tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
323
} while (--chars_in > 0);
324
STORE(D,D0,D1,*out);
325
}
326
#endif /* LARGEDATA */
327
328
329
/* ===== (mostly) Standard DES Tables ==================== */
330
331
static unsigned char IP[] = { /* initial permutation */
332
58, 50, 42, 34, 26, 18, 10, 2,
333
60, 52, 44, 36, 28, 20, 12, 4,
334
62, 54, 46, 38, 30, 22, 14, 6,
335
64, 56, 48, 40, 32, 24, 16, 8,
336
57, 49, 41, 33, 25, 17, 9, 1,
337
59, 51, 43, 35, 27, 19, 11, 3,
338
61, 53, 45, 37, 29, 21, 13, 5,
339
63, 55, 47, 39, 31, 23, 15, 7,
340
};
341
342
/* The final permutation is the inverse of IP - no table is necessary */
343
344
static unsigned char ExpandTr[] = { /* expansion operation */
345
32, 1, 2, 3, 4, 5,
346
4, 5, 6, 7, 8, 9,
347
8, 9, 10, 11, 12, 13,
348
12, 13, 14, 15, 16, 17,
349
16, 17, 18, 19, 20, 21,
350
20, 21, 22, 23, 24, 25,
351
24, 25, 26, 27, 28, 29,
352
28, 29, 30, 31, 32, 1,
353
};
354
355
static unsigned char PC1[] = { /* permuted choice table 1 */
356
57, 49, 41, 33, 25, 17, 9,
357
1, 58, 50, 42, 34, 26, 18,
358
10, 2, 59, 51, 43, 35, 27,
359
19, 11, 3, 60, 52, 44, 36,
360
361
63, 55, 47, 39, 31, 23, 15,
362
7, 62, 54, 46, 38, 30, 22,
363
14, 6, 61, 53, 45, 37, 29,
364
21, 13, 5, 28, 20, 12, 4,
365
};
366
367
static unsigned char Rotates[] = { /* PC1 rotation schedule */
368
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
369
};
370
371
/* note: each "row" of PC2 is left-padded with bits that make it invertible */
372
static unsigned char PC2[] = { /* permuted choice table 2 */
373
9, 18, 14, 17, 11, 24, 1, 5,
374
22, 25, 3, 28, 15, 6, 21, 10,
375
35, 38, 23, 19, 12, 4, 26, 8,
376
43, 54, 16, 7, 27, 20, 13, 2,
377
378
0, 0, 41, 52, 31, 37, 47, 55,
379
0, 0, 30, 40, 51, 45, 33, 48,
380
0, 0, 44, 49, 39, 56, 34, 53,
381
0, 0, 46, 42, 50, 36, 29, 32,
382
};
383
384
static unsigned char S[8][64] = { /* 48->32 bit substitution tables */
385
/* S[1] */
386
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
387
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
388
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
389
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
390
/* S[2] */
391
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
392
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
393
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
394
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
395
/* S[3] */
396
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
397
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
398
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
399
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
400
/* S[4] */
401
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
402
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
403
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
404
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
405
/* S[5] */
406
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
407
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
408
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
409
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
410
/* S[6] */
411
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
412
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
413
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
414
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
415
/* S[7] */
416
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
417
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
418
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
419
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
420
/* S[8] */
421
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
422
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
423
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
424
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
425
};
426
427
static unsigned char P32Tr[] = { /* 32-bit permutation function */
428
16, 7, 20, 21,
429
29, 12, 28, 17,
430
1, 15, 23, 26,
431
5, 18, 31, 10,
432
2, 8, 24, 14,
433
32, 27, 3, 9,
434
19, 13, 30, 6,
435
22, 11, 4, 25,
436
};
437
438
static unsigned char CIFP[] = { /* compressed/interleaved permutation */
439
1, 2, 3, 4, 17, 18, 19, 20,
440
5, 6, 7, 8, 21, 22, 23, 24,
441
9, 10, 11, 12, 25, 26, 27, 28,
442
13, 14, 15, 16, 29, 30, 31, 32,
443
444
33, 34, 35, 36, 49, 50, 51, 52,
445
37, 38, 39, 40, 53, 54, 55, 56,
446
41, 42, 43, 44, 57, 58, 59, 60,
447
45, 46, 47, 48, 61, 62, 63, 64,
448
};
449
450
static unsigned char itoa64[] = /* 0..63 => ascii-64 */
451
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
452
453
454
/* ===== Tables that are initialized at run time ==================== */
455
456
457
static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
458
459
/* Initial key schedule permutation */
460
static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
461
462
/* Subsequent key schedule rotation permutations */
463
static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
464
465
/* Initial permutation/expansion table */
466
static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
467
468
/* Table that combines the S, P, and E operations. */
469
static long SPE[2][8][64];
470
471
/* compressed/interleaved => final permutation table */
472
static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
473
474
475
/* ==================================== */
476
477
static C_block constdatablock; /* encryption constant */
478
static char cryptresult[1+4+4+11+1]; /* encrypted result */
479
480
/*
481
* Initialize "perm" to represent transformation "p", which rearranges
482
* (perhaps with expansion and/or contraction) one packed array of bits
483
* (of size "chars_in" characters) into another array (of size "chars_out"
484
* characters).
485
*
486
* "perm" must be all-zeroes on entry to this routine.
487
*/
488
static void init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS],
489
unsigned char p[64], int chars_in, int chars_out) {
490
register int i, j, k, l;
491
492
for (k = 0; k < chars_out*8; k++) { /* each output bit position */
493
l = p[k] - 1; /* where this bit comes from */
494
if (l < 0)
495
continue; /* output bit is always 0 */
496
i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
497
l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
498
for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
499
if ((j & l) != 0)
500
perm[i][j].b[k>>3] |= 1<<(k&07);
501
}
502
}
503
}
504
505
/*
506
* Initialize various tables. This need only be done once. It could even be
507
* done at compile time, if the compiler were capable of that sort of thing.
508
*/
509
static void init_des(void) {
510
register int i, j;
511
register long k;
512
register int tableno;
513
static unsigned char perm[64], tmp32[32]; /* "static" for speed */
514
515
/*
516
* table that converts chars "./0-9A-Za-z"to integers 0-63.
517
*/
518
for (i = 0; i < 64; i++)
519
a64toi[itoa64[i]] = i;
520
521
/*
522
* PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
523
*/
524
for (i = 0; i < 64; i++)
525
perm[i] = 0;
526
for (i = 0; i < 64; i++) {
527
if ((k = PC2[i]) == 0)
528
continue;
529
k += Rotates[0]-1;
530
if ((k%28) < Rotates[0]) k -= 28;
531
k = PC1[k];
532
if (k > 0) {
533
k--;
534
k = (k|07) - (k&07);
535
k++;
536
}
537
perm[i] = (unsigned char) k;
538
}
539
#ifdef DEBUG
540
prtab("pc1tab", perm, 8);
541
#endif
542
init_perm(PC1ROT, perm, 8, 8);
543
544
/*
545
* PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
546
*/
547
for (j = 0; j < 2; j++) {
548
unsigned char pc2inv[64];
549
for (i = 0; i < 64; i++)
550
perm[i] = pc2inv[i] = 0;
551
for (i = 0; i < 64; i++) {
552
if ((k = PC2[i]) == 0)
553
continue;
554
pc2inv[k-1] = i+1;
555
}
556
for (i = 0; i < 64; i++) {
557
if ((k = PC2[i]) == 0)
558
continue;
559
k += j;
560
if ((k%28) <= j) k -= 28;
561
perm[i] = pc2inv[k];
562
}
563
#ifdef DEBUG
564
prtab("pc2tab", perm, 8);
565
#endif
566
init_perm(PC2ROT[j], perm, 8, 8);
567
}
568
569
/*
570
* Bit reverse, then initial permutation, then expansion.
571
*/
572
for (i = 0; i < 8; i++) {
573
for (j = 0; j < 8; j++) {
574
k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
575
if (k > 32)
576
k -= 32;
577
else if (k > 0)
578
k--;
579
if (k > 0) {
580
k--;
581
k = (k|07) - (k&07);
582
k++;
583
}
584
perm[i*8+j] = (unsigned char) k;
585
}
586
}
587
#ifdef DEBUG
588
prtab("ietab", perm, 8);
589
#endif
590
init_perm(IE3264, perm, 4, 8);
591
592
/*
593
* Compression, then final permutation, then bit reverse.
594
*/
595
for (i = 0; i < 64; i++) {
596
k = IP[CIFP[i]-1];
597
if (k > 0) {
598
k--;
599
k = (k|07) - (k&07);
600
k++;
601
}
602
perm[k-1] = i+1;
603
}
604
#ifdef DEBUG
605
prtab("cftab", perm, 8);
606
#endif
607
init_perm(CF6464, perm, 8, 8);
608
609
/*
610
* SPE table
611
*/
612
for (i = 0; i < 48; i++)
613
perm[i] = P32Tr[ExpandTr[i]-1];
614
for (tableno = 0; tableno < 8; tableno++) {
615
for (j = 0; j < 64; j++) {
616
k = (((j >> 0) &01) << 5)|
617
(((j >> 1) &01) << 3)|
618
(((j >> 2) &01) << 2)|
619
(((j >> 3) &01) << 1)|
620
(((j >> 4) &01) << 0)|
621
(((j >> 5) &01) << 4);
622
k = S[tableno][k];
623
k = (((k >> 3)&01) << 0)|
624
(((k >> 2)&01) << 1)|
625
(((k >> 1)&01) << 2)|
626
(((k >> 0)&01) << 3);
627
for (i = 0; i < 32; i++)
628
tmp32[i] = 0;
629
for (i = 0; i < 4; i++)
630
tmp32[4 * tableno + i] = (k >> i) & 01;
631
k = 0;
632
for (i = 24; --i >= 0; )
633
k = (k<<1) | tmp32[perm[i]-1];
634
TO_SIX_BIT(SPE[0][tableno][j], k);
635
k = 0;
636
for (i = 24; --i >= 0; )
637
k = (k<<1) | tmp32[perm[i+24]-1];
638
TO_SIX_BIT(SPE[1][tableno][j], k);
639
}
640
}
641
}
642
643
/*
644
* The Key Schedule, filled in by des_setkey() or setkey().
645
*/
646
#define KS_SIZE 16
647
static C_block KS[KS_SIZE];
648
649
/*
650
* Set up the key schedule from the key.
651
*/
652
static int des_setkey(register const char *key) {
653
register DCL_BLOCK_K;
654
register C_block *ptabp;
655
register int i;
656
static int des_ready = 0;
657
658
if (!des_ready) {
659
init_des();
660
des_ready = 1;
661
}
662
663
PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
664
key = (char *)&KS[0];
665
STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
666
for (i = 1; i < 16; i++) {
667
key += sizeof(C_block);
668
STORE(K,K0,K1,*(C_block *)key);
669
ptabp = (C_block *)PC2ROT[Rotates[i]-1];
670
PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
671
STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
672
}
673
return (0);
674
}
675
676
/*
677
* Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
678
* iterations of DES, using the the given 24-bit salt and the pre-computed key
679
* schedule, and store the resulting 8 chars at "out" (in == out is permitted).
680
*
681
* NOTE: the performance of this routine is critically dependent on your
682
* compiler and machine architecture.
683
*/
684
static int des_cipher(const char *in, char *out, long salt, int num_iter) {
685
/* variables that we want in registers, most important first */
686
#if defined(pdp11)
687
register int j;
688
#endif
689
register long L0, L1, R0, R1, k;
690
register C_block *kp;
691
register int ks_inc, loop_count;
692
C_block B;
693
694
L0 = salt;
695
TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
696
697
#if defined(vax) || defined(pdp11)
698
salt = ~salt; /* "x &~ y" is faster than "x & y". */
699
#define SALT (~salt)
700
#else
701
#define SALT salt
702
#endif
703
704
#if defined(MUST_ALIGN)
705
B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
706
B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
707
LOAD(L,L0,L1,B);
708
#else
709
LOAD(L,L0,L1,*(C_block *)in);
710
#endif
711
LOADREG(R,R0,R1,L,L0,L1);
712
L0 &= 0x55555555L;
713
L1 &= 0x55555555L;
714
L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
715
R0 &= 0xaaaaaaaaL;
716
R1 = (R1 >> 1) & 0x55555555L;
717
L1 = R0 | R1; /* L1 is the odd-numbered input bits */
718
STORE(L,L0,L1,B);
719
PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
720
PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
721
722
if (num_iter >= 0)
723
{ /* encryption */
724
kp = &KS[0];
725
ks_inc = sizeof(*kp);
726
}
727
else
728
{ /* decryption */
729
num_iter = -num_iter;
730
kp = &KS[KS_SIZE-1];
731
ks_inc = -((int) sizeof(*kp));
732
}
733
734
while (--num_iter >= 0) {
735
loop_count = 8;
736
do {
737
738
#define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
739
#if defined(gould)
740
/* use this if B.b[i] is evaluated just once ... */
741
#define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
742
#else
743
#if defined(pdp11)
744
/* use this if your "long" int indexing is slow */
745
#define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
746
#else
747
/* use this if "k" is allocated to a register ... */
748
#define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
749
#endif
750
#endif
751
752
#define CRUNCH(p0, p1, q0, q1) \
753
k = (q0 ^ q1) & SALT; \
754
B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
755
B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
756
kp = (C_block *)((char *)kp+ks_inc); \
757
\
758
DOXOR(p0, p1, 0); \
759
DOXOR(p0, p1, 1); \
760
DOXOR(p0, p1, 2); \
761
DOXOR(p0, p1, 3); \
762
DOXOR(p0, p1, 4); \
763
DOXOR(p0, p1, 5); \
764
DOXOR(p0, p1, 6); \
765
DOXOR(p0, p1, 7);
766
767
CRUNCH(L0, L1, R0, R1);
768
CRUNCH(R0, R1, L0, L1);
769
} while (--loop_count != 0);
770
kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
771
772
773
/* swap L and R */
774
L0 ^= R0; L1 ^= R1;
775
R0 ^= L0; R1 ^= L1;
776
L0 ^= R0; L1 ^= R1;
777
}
778
779
/* store the encrypted (or decrypted) result */
780
L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
781
L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
782
STORE(L,L0,L1,B);
783
PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
784
#if defined(MUST_ALIGN)
785
STORE(L,L0,L1,B);
786
out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
787
out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
788
#else
789
STORE(L,L0,L1,*(C_block *)out);
790
#endif
791
return (0);
792
}
793
794
/*
795
* "setkey" routine (for backwards compatibility)
796
*/
797
extern int setkey(register const char *key) {
798
register int i, j, k;
799
C_block keyblock;
800
801
for (i = 0; i < 8; i++) {
802
k = 0;
803
for (j = 0; j < 8; j++) {
804
k <<= 1;
805
k |= (unsigned char)*key++;
806
}
807
keyblock.b[i] = k;
808
}
809
return (des_setkey((char *)keyblock.b));
810
}
811
812
/*
813
* "encrypt" routine (for backwards compatibility)
814
*/
815
extern int encrypt(register char *block, int flag) {
816
register int i, j, k;
817
C_block cblock;
818
819
for (i = 0; i < 8; i++) {
820
k = 0;
821
for (j = 0; j < 8; j++) {
822
k <<= 1;
823
k |= (unsigned char)*block++;
824
}
825
cblock.b[i] = k;
826
}
827
if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
828
return (1);
829
for (i = 7; i >= 0; i--) {
830
k = cblock.b[i];
831
for (j = 7; j >= 0; j--) {
832
*--block = k&01;
833
k >>= 1;
834
}
835
}
836
return (0);
837
}
838
839
/*
840
* Return a pointer to static data consisting of the "setting"
841
* followed by an encryption produced by the "key" and "setting".
842
*/
843
extern char * crypt(register const char *key, register const char *setting) {
844
register char *encp;
845
register long i;
846
register int t;
847
long salt;
848
int num_iter, salt_size;
849
C_block keyblock, rsltblock;
850
851
#ifdef HL_NOENCRYPTION
852
char buff[1024];
853
strncpy(buff, key, 1024);
854
buff[1023] = 0;
855
return buff;
856
#endif
857
858
for (i = 0; i < 8; i++) {
859
if ((t = 2*(unsigned char)(*key)) != 0)
860
key++;
861
keyblock.b[i] = t;
862
}
863
if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
864
return (NULL);
865
866
encp = &cryptresult[0];
867
switch (*setting) {
868
case _PASSWORD_EFMT1:
869
/*
870
* Involve the rest of the password 8 characters at a time.
871
*/
872
while (*key) {
873
if (des_cipher((char *)&keyblock,
874
(char *)&keyblock, 0L, 1))
875
return (NULL);
876
for (i = 0; i < 8; i++) {
877
if ((t = 2*(unsigned char)(*key)) != 0)
878
key++;
879
keyblock.b[i] ^= t;
880
}
881
if (des_setkey((char *)keyblock.b))
882
return (NULL);
883
}
884
885
*encp++ = *setting++;
886
887
/* get iteration count */
888
num_iter = 0;
889
for (i = 4; --i >= 0; ) {
890
if ((t = (unsigned char)setting[i]) == '\0')
891
t = '.';
892
encp[i] = t;
893
num_iter = (num_iter<<6) | a64toi[t];
894
}
895
setting += 4;
896
encp += 4;
897
salt_size = 4;
898
break;
899
default:
900
num_iter = 25;
901
salt_size = 2;
902
}
903
904
salt = 0;
905
for (i = salt_size; --i >= 0; ) {
906
if ((t = (unsigned char)setting[i]) == '\0')
907
t = '.';
908
encp[i] = t;
909
salt = (salt<<6) | a64toi[t];
910
}
911
encp += salt_size;
912
if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
913
salt, num_iter))
914
return (NULL);
915
916
/*
917
* Encode the 64 cipher bits as 11 ascii characters.
918
*/
919
i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
920
encp[3] = itoa64[i&0x3f]; i >>= 6;
921
encp[2] = itoa64[i&0x3f]; i >>= 6;
922
encp[1] = itoa64[i&0x3f]; i >>= 6;
923
encp[0] = itoa64[i]; encp += 4;
924
i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
925
encp[3] = itoa64[i&0x3f]; i >>= 6;
926
encp[2] = itoa64[i&0x3f]; i >>= 6;
927
encp[1] = itoa64[i&0x3f]; i >>= 6;
928
encp[0] = itoa64[i]; encp += 4;
929
i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
930
encp[2] = itoa64[i&0x3f]; i >>= 6;
931
encp[1] = itoa64[i&0x3f]; i >>= 6;
932
encp[0] = itoa64[i];
933
934
encp[3] = 0;
935
936
return (cryptresult);
937
}
938
939
#ifdef DEBUG
940
STATIC
941
prtab(s, t, num_rows)
942
char *s;
943
unsigned char *t;
944
int num_rows;
945
{
946
register int i, j;
947
948
(void)printf("%s:\n", s);
949
for (i = 0; i < num_rows; i++) {
950
for (j = 0; j < 8; j++) {
951
(void)printf("%3d", t[i*8+j]);
952
}
953
(void)printf("\n");
954
}
955
(void)printf("\n");
956
}
957
#endif
958
959
#endif
960
961