#include "FEATURE/uwin"12#if !_UWIN34void _STUB_exp(){}56#else78/*9* Copyright (c) 1985, 199310* The Regents of the University of California. All rights reserved.11*12* Redistribution and use in source and binary forms, with or without13* modification, are permitted provided that the following conditions14* are met:15* 1. Redistributions of source code must retain the above copyright16* notice, this list of conditions and the following disclaimer.17* 2. Redistributions in binary form must reproduce the above copyright18* notice, this list of conditions and the following disclaimer in the19* documentation and/or other materials provided with the distribution.20* 3. Neither the name of the University nor the names of its contributors21* may be used to endorse or promote products derived from this software22* without specific prior written permission.23*24* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND25* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE26* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE27* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE28* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL29* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS30* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)31* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT32* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY33* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF34* SUCH DAMAGE.35*/3637#ifndef lint38static char sccsid[] = "@(#)exp.c 8.1 (Berkeley) 6/4/93";39#endif /* not lint */4041/* EXP(X)42* RETURN THE EXPONENTIAL OF X43* DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)44* CODED IN C BY K.C. NG, 1/19/85;45* REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.46*47* Required system supported functions:48* scalb(x,n)49* copysign(x,y)50* finite(x)51*52* Method:53* 1. Argument Reduction: given the input x, find r and integer k such54* that55* x = k*ln2 + r, |r| <= 0.5*ln2 .56* r will be represented as r := z+c for better accuracy.57*58* 2. Compute exp(r) by59*60* exp(r) = 1 + r + r*R1/(2-R1),61* where62* R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).63*64* 3. exp(x) = 2^k * exp(r) .65*66* Special cases:67* exp(INF) is INF, exp(NaN) is NaN;68* exp(-INF)= 0;69* for finite argument, only exp(0)=1 is exact.70*71* Accuracy:72* exp(x) returns the exponential of x nearly rounded. In a test run73* with 1,156,000 random arguments on a VAX, the maximum observed74* error was 0.869 ulps (units in the last place).75*76* Constants:77* The hexadecimal values are the intended ones for the following constants.78* The decimal values may be used, provided that the compiler will convert79* from decimal to binary accurately enough to produce the hexadecimal values80* shown.81*/8283#include "mathimpl.h"8485vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)86vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)87vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)88vc(lntiny,-9.5654310917272452386E1 ,4f01,c3bf,33af,d72e, 7,-.BF4F01D72E33AF)89vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)90vc(p1, 1.6666666666666602251E-1 ,aaaa,3f2a,a9f1,aaaa, -2, .AAAAAAAAAAA9F1)91vc(p2, -2.7777777777015591216E-3 ,0b60,bc36,ec94,b5f5, -8,-.B60B60B5F5EC94)92vc(p3, 6.6137563214379341918E-5 ,b355,398a,f15f,792e, -13, .8AB355792EF15F)93vc(p4, -1.6533902205465250480E-6 ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)94vc(p5, 4.1381367970572387085E-8 ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)9596#ifdef vccast97#define ln2hi vccast(ln2hi)98#define ln2lo vccast(ln2lo)99#define lnhuge vccast(lnhuge)100#define lntiny vccast(lntiny)101#define invln2 vccast(invln2)102#define p1 vccast(p1)103#define p2 vccast(p2)104#define p3 vccast(p3)105#define p4 vccast(p4)106#define p5 vccast(p5)107#endif108109ic(p1, 1.6666666666666601904E-1, -3, 1.555555555553E)110ic(p2, -2.7777777777015593384E-3, -9, -1.6C16C16BEBD93)111ic(p3, 6.6137563214379343612E-5, -14, 1.1566AAF25DE2C)112ic(p4, -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)113ic(p5, 4.1381367970572384604E-8, -25, 1.6376972BEA4D0)114ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)115ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76)116ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)117ic(lntiny,-7.5137154372698068983E2, 9, -1.77AF8EBEAE354)118ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)119120#if !_lib_exp121122extern double exp(x)123double x;124{125double z,hi,lo,c;126int k;127128#if !defined(vax)&&!defined(tahoe)129if(x!=x) return(x); /* x is NaN */130#endif /* !defined(vax)&&!defined(tahoe) */131if( x <= lnhuge ) {132if( x >= lntiny ) {133134/* argument reduction : x --> x - k*ln2 */135136k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */137138/* express x-k*ln2 as hi-lo and let x=hi-lo rounded */139140hi=x-k*ln2hi;141x=hi-(lo=k*ln2lo);142143/* return 2^k*[1+x+x*c/(2+c)] */144z=x*x;145c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));146return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);147148}149/* end of x > lntiny */150151else152/* exp(-big#) underflows to zero */153if(finite(x)) return(scalb(1.0,-5000));154155/* exp(-INF) is zero */156else return(0.0);157}158/* end of x < lnhuge */159160else161/* exp(INF) is INF, exp(+big#) overflows to INF */162return( finite(x) ? scalb(1.0,5000) : x);163}164165#endif166167/* returns exp(r = x + c) for |c| < |x| with no overlap. */168169double __exp__D(x, c)170double x, c;171{172double z,hi,lo;173int k;174175#if !defined(vax)&&!defined(tahoe)176if (x!=x) return(x); /* x is NaN */177#endif /* !defined(vax)&&!defined(tahoe) */178if ( x <= lnhuge ) {179if ( x >= lntiny ) {180181/* argument reduction : x --> x - k*ln2 */182z = invln2*x;183k = (int)z + copysign(.5, x);184185/* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */186187hi=(x-k*ln2hi); /* Exact. */188x= hi - (lo = k*ln2lo-c);189/* return 2^k*[1+x+x*c/(2+c)] */190z=x*x;191c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));192c = (x*c)/(2.0-c);193194return scalb(1.+(hi-(lo - c)), k);195}196/* end of x > lntiny */197198else199/* exp(-big#) underflows to zero */200if(finite(x)) return(scalb(1.0,-5000));201202/* exp(-INF) is zero */203else return(0.0);204}205/* end of x < lnhuge */206207else208/* exp(INF) is INF, exp(+big#) overflows to INF */209return( finite(x) ? scalb(1.0,5000) : x);210}211212#endif213214215