#include "FEATURE/uwin"12#if !_UWIN || _lib_expm134void _STUB_expm1(){}56#else78/*9* Copyright (c) 1985, 199310* The Regents of the University of California. All rights reserved.11*12* Redistribution and use in source and binary forms, with or without13* modification, are permitted provided that the following conditions14* are met:15* 1. Redistributions of source code must retain the above copyright16* notice, this list of conditions and the following disclaimer.17* 2. Redistributions in binary form must reproduce the above copyright18* notice, this list of conditions and the following disclaimer in the19* documentation and/or other materials provided with the distribution.20* 3. Neither the name of the University nor the names of its contributors21* may be used to endorse or promote products derived from this software22* without specific prior written permission.23*24* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND25* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE26* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE27* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE28* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL29* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS30* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)31* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT32* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY33* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF34* SUCH DAMAGE.35*/3637#ifndef lint38static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 6/4/93";39#endif /* not lint */4041/* EXPM1(X)42* RETURN THE EXPONENTIAL OF X MINUS ONE43* DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)44* CODED IN C BY K.C. NG, 1/19/85;45* REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.46*47* Required system supported functions:48* scalb(x,n)49* copysign(x,y)50* finite(x)51*52* Kernel function:53* exp__E(x,c)54*55* Method:56* 1. Argument Reduction: given the input x, find r and integer k such57* that58* x = k*ln2 + r, |r| <= 0.5*ln2 .59* r will be represented as r := z+c for better accuracy.60*61* 2. Compute EXPM1(r)=exp(r)-1 by62*63* EXPM1(r=z+c) := z + exp__E(z,c)64*65* 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).66*67* Remarks:68* 1. When k=1 and z < -0.25, we use the following formula for69* better accuracy:70* EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )71* 2. To avoid rounding error in 1-2^-k where k is large, we use72* EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }73* when k>56.74*75* Special cases:76* EXPM1(INF) is INF, EXPM1(NaN) is NaN;77* EXPM1(-INF)= -1;78* for finite argument, only EXPM1(0)=0 is exact.79*80* Accuracy:81* EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with82* 1,166,000 random arguments on a VAX, the maximum observed error was83* .872 ulps (units of the last place).84*85* Constants:86* The hexadecimal values are the intended ones for the following constants.87* The decimal values may be used, provided that the compiler will convert88* from decimal to binary accurately enough to produce the hexadecimal values89* shown.90*/9192#include "mathimpl.h"9394vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)95vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)96vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)97vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)9899ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)100ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)101ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)102ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)103104#ifdef vccast105#define ln2hi vccast(ln2hi)106#define ln2lo vccast(ln2lo)107#define lnhuge vccast(lnhuge)108#define invln2 vccast(invln2)109#endif110111extern double expm1(x)112double x;113{114const static double one=1.0, half=1.0/2.0;115double z,hi,lo,c;116int k;117#if defined(vax)||defined(tahoe)118static prec=56;119#else /* defined(vax)||defined(tahoe) */120static prec=53;121#endif /* defined(vax)||defined(tahoe) */122123#if !defined(vax)&&!defined(tahoe)124if(x!=x) return(x); /* x is NaN */125#endif /* !defined(vax)&&!defined(tahoe) */126127if( x <= lnhuge ) {128if( x >= -40.0 ) {129130/* argument reduction : x - k*ln2 */131k= (int)(invln2*x)+copysign(0.5,x); /* k=NINT(x/ln2) */132hi=x-k*ln2hi ;133z=hi-(lo=k*ln2lo);134c=(hi-z)-lo;135136if(k==0) return(z+__exp__E(z,c));137if(k==1)138if(z< -0.25)139{x=z+half;x +=__exp__E(z,c); return(x+x);}140else141{z+=__exp__E(z,c); x=half+z; return(x+x);}142/* end of k=1 */143144else {145if(k<=prec)146{ x=one-scalb(one,-k); z += __exp__E(z,c);}147else if(k<100)148{ x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}149else150{ x = __exp__E(z,c)+z; z=one;}151152return (scalb(x+z,k));153}154}155/* end of x > lnunfl */156157else158/* expm1(-big#) rounded to -1 (inexact) */159if(finite(x))160{ ln2hi+ln2lo; return(-one);}161162/* expm1(-INF) is -1 */163else return(-one);164}165/* end of x < lnhuge */166167else168/* expm1(INF) is INF, expm1(+big#) overflows to INF */169return( finite(x) ? scalb(one,5000) : x);170}171172#endif173174175