Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
att
GitHub Repository: att/ast
Path: blob/master/src/lib/libast/uwin/gamma.c
1811 views
1
#include "FEATURE/uwin"
2
3
#if !_UWIN || _lib_gamma
4
5
void _STUB_gamma(){}
6
7
#else
8
9
/*-
10
* Copyright (c) 1992, 1993
11
* The Regents of the University of California. All rights reserved.
12
*
13
* Redistribution and use in source and binary forms, with or without
14
* modification, are permitted provided that the following conditions
15
* are met:
16
* 1. Redistributions of source code must retain the above copyright
17
* notice, this list of conditions and the following disclaimer.
18
* 2. Redistributions in binary form must reproduce the above copyright
19
* notice, this list of conditions and the following disclaimer in the
20
* documentation and/or other materials provided with the distribution.
21
* 3. Neither the name of the University nor the names of its contributors
22
* may be used to endorse or promote products derived from this software
23
* without specific prior written permission.
24
*
25
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35
* SUCH DAMAGE.
36
*/
37
38
#ifndef lint
39
static char sccsid[] = "@(#)gamma.c 8.1 (Berkeley) 6/4/93";
40
#endif /* not lint */
41
42
/*
43
* This code by P. McIlroy, Oct 1992;
44
*
45
* The financial support of UUNET Communications Services is greatfully
46
* acknowledged.
47
*/
48
49
#define gamma ______gamma
50
51
#include <math.h>
52
#include <errno.h>
53
#include "mathimpl.h"
54
55
#undef gamma
56
57
/* METHOD:
58
* x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
59
* At negative integers, return +Inf, and set errno.
60
*
61
* x < 6.5:
62
* Use argument reduction G(x+1) = xG(x) to reach the
63
* range [1.066124,2.066124]. Use a rational
64
* approximation centered at the minimum (x0+1) to
65
* ensure monotonicity.
66
*
67
* x >= 6.5: Use the asymptotic approximation (Stirling's formula)
68
* adjusted for equal-ripples:
69
*
70
* log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
71
*
72
* Keep extra precision in multiplying (x-.5)(log(x)-1), to
73
* avoid premature round-off.
74
*
75
* Special values:
76
* non-positive integer: Set overflow trap; return +Inf;
77
* x > 171.63: Set overflow trap; return +Inf;
78
* NaN: Set invalid trap; return NaN
79
*
80
* Accuracy: Gamma(x) is accurate to within
81
* x > 0: error provably < 0.9ulp.
82
* Maximum observed in 1,000,000 trials was .87ulp.
83
* x < 0:
84
* Maximum observed error < 4ulp in 1,000,000 trials.
85
*/
86
87
static double neg_gam __P((double));
88
static double small_gam __P((double));
89
static double smaller_gam __P((double));
90
static struct Double large_gam __P((double));
91
static struct Double ratfun_gam __P((double, double));
92
93
/*
94
* Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
95
* [1.066.., 2.066..] accurate to 4.25e-19.
96
*/
97
#define LEFT -.3955078125 /* left boundary for rat. approx */
98
#define x0 .461632144968362356785 /* xmin - 1 */
99
100
#define a0_hi 0.88560319441088874992
101
#define a0_lo -.00000000000000004996427036469019695
102
#define P0 6.21389571821820863029017800727e-01
103
#define P1 2.65757198651533466104979197553e-01
104
#define P2 5.53859446429917461063308081748e-03
105
#define P3 1.38456698304096573887145282811e-03
106
#define P4 2.40659950032711365819348969808e-03
107
#define Q0 1.45019531250000000000000000000e+00
108
#define Q1 1.06258521948016171343454061571e+00
109
#define Q2 -2.07474561943859936441469926649e-01
110
#define Q3 -1.46734131782005422506287573015e-01
111
#define Q4 3.07878176156175520361557573779e-02
112
#define Q5 5.12449347980666221336054633184e-03
113
#define Q6 -1.76012741431666995019222898833e-03
114
#define Q7 9.35021023573788935372153030556e-05
115
#define Q8 6.13275507472443958924745652239e-06
116
/*
117
* Constants for large x approximation (x in [6, Inf])
118
* (Accurate to 2.8*10^-19 absolute)
119
*/
120
#define lns2pi_hi 0.418945312500000
121
#define lns2pi_lo -.000006779295327258219670263595
122
#define Pa0 8.33333333333333148296162562474e-02
123
#define Pa1 -2.77777777774548123579378966497e-03
124
#define Pa2 7.93650778754435631476282786423e-04
125
#define Pa3 -5.95235082566672847950717262222e-04
126
#define Pa4 8.41428560346653702135821806252e-04
127
#define Pa5 -1.89773526463879200348872089421e-03
128
#define Pa6 5.69394463439411649408050664078e-03
129
#define Pa7 -1.44705562421428915453880392761e-02
130
131
static const double zero = 0., one = 1.0, tiny = 1e-300;
132
static int endian;
133
/*
134
* TRUNC sets trailing bits in a floating-point number to zero.
135
* is a temporary variable.
136
*/
137
#if defined(vax) || defined(tahoe)
138
#define _IEEE 0
139
#define TRUNC(x) x = (double) (float) (x)
140
#else
141
#define _IEEE 1
142
#define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
143
#define infnan(x) 0.0
144
#endif
145
146
extern double gamma(x)
147
double x;
148
{
149
struct Double u;
150
endian = (*(int *) &one) ? 1 : 0;
151
152
if (x >= 6) {
153
if(x > 171.63)
154
return(one/zero);
155
u = large_gam(x);
156
return(__exp__D(u.a, u.b));
157
} else if (x >= 1.0 + LEFT + x0)
158
return (small_gam(x));
159
else if (x > 1.e-17)
160
return (smaller_gam(x));
161
else if (x > -1.e-17) {
162
if (x == 0.0)
163
if (!_IEEE) return (infnan(ERANGE));
164
else return (one/x);
165
one+1e-20; /* Raise inexact flag. */
166
return (one/x);
167
} else if (!finite(x)) {
168
if (_IEEE) /* x = NaN, -Inf */
169
return (x*x);
170
else
171
return (infnan(EDOM));
172
} else
173
return (neg_gam(x));
174
}
175
/*
176
* Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
177
*/
178
static struct Double
179
large_gam(x)
180
double x;
181
{
182
double z, p;
183
struct Double t, u, v;
184
185
z = one/(x*x);
186
p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
187
p = p/x;
188
189
u = __log__D(x);
190
u.a -= one;
191
v.a = (x -= .5);
192
TRUNC(v.a);
193
v.b = x - v.a;
194
t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
195
t.b = v.b*u.a + x*u.b;
196
/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
197
t.b += lns2pi_lo; t.b += p;
198
u.a = lns2pi_hi + t.b; u.a += t.a;
199
u.b = t.a - u.a;
200
u.b += lns2pi_hi; u.b += t.b;
201
return (u);
202
}
203
/*
204
* Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
205
* It also has correct monotonicity.
206
*/
207
static double
208
small_gam(x)
209
double x;
210
{
211
double y, ym1, t;
212
struct Double yy, r;
213
y = x - one;
214
ym1 = y - one;
215
if (y <= 1.0 + (LEFT + x0)) {
216
yy = ratfun_gam(y - x0, 0);
217
return (yy.a + yy.b);
218
}
219
r.a = y;
220
TRUNC(r.a);
221
yy.a = r.a - one;
222
y = ym1;
223
yy.b = r.b = y - yy.a;
224
/* Argument reduction: G(x+1) = x*G(x) */
225
for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
226
t = r.a*yy.a;
227
r.b = r.a*yy.b + y*r.b;
228
r.a = t;
229
TRUNC(r.a);
230
r.b += (t - r.a);
231
}
232
/* Return r*gamma(y). */
233
yy = ratfun_gam(y - x0, 0);
234
y = r.b*(yy.a + yy.b) + r.a*yy.b;
235
y += yy.a*r.a;
236
return (y);
237
}
238
/*
239
* Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
240
*/
241
static double
242
smaller_gam(x)
243
double x;
244
{
245
double t, d;
246
struct Double r, xx;
247
if (x < x0 + LEFT) {
248
t = x, TRUNC(t);
249
d = (t+x)*(x-t);
250
t *= t;
251
xx.a = (t + x), TRUNC(xx.a);
252
xx.b = x - xx.a; xx.b += t; xx.b += d;
253
t = (one-x0); t += x;
254
d = (one-x0); d -= t; d += x;
255
x = xx.a + xx.b;
256
} else {
257
xx.a = x, TRUNC(xx.a);
258
xx.b = x - xx.a;
259
t = x - x0;
260
d = (-x0 -t); d += x;
261
}
262
r = ratfun_gam(t, d);
263
d = r.a/x, TRUNC(d);
264
r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
265
return (d + r.a/x);
266
}
267
/*
268
* returns (z+c)^2 * P(z)/Q(z) + a0
269
*/
270
static struct Double
271
ratfun_gam(z, c)
272
double z, c;
273
{
274
double p, q;
275
struct Double r, t;
276
277
q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
278
p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
279
280
/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
281
p = p/q;
282
t.a = z, TRUNC(t.a); /* t ~= z + c */
283
t.b = (z - t.a) + c;
284
t.b *= (t.a + z);
285
q = (t.a *= t.a); /* t = (z+c)^2 */
286
TRUNC(t.a);
287
t.b += (q - t.a);
288
r.a = p, TRUNC(r.a); /* r = P/Q */
289
r.b = p - r.a;
290
t.b = t.b*p + t.a*r.b + a0_lo;
291
t.a *= r.a; /* t = (z+c)^2*(P/Q) */
292
r.a = t.a + a0_hi, TRUNC(r.a);
293
r.b = ((a0_hi-r.a) + t.a) + t.b;
294
return (r); /* r = a0 + t */
295
}
296
297
static double
298
neg_gam(x)
299
double x;
300
{
301
int sgn = 1;
302
struct Double lg, lsine;
303
double y, z;
304
305
y = floor(x + .5);
306
if (y == x) /* Negative integer. */
307
if(!_IEEE)
308
return (infnan(ERANGE));
309
else
310
return (one/zero);
311
z = fabs(x - y);
312
y = .5*ceil(x);
313
if (y == ceil(y))
314
sgn = -1;
315
if (z < .25)
316
z = sin(M_PI*z);
317
else
318
z = cos(M_PI*(0.5-z));
319
/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
320
if (x < -170) {
321
if (x < -190)
322
return ((double)sgn*tiny*tiny);
323
y = one - x; /* exact: 128 < |x| < 255 */
324
lg = large_gam(y);
325
lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */
326
lg.a -= lsine.a; /* exact (opposite signs) */
327
lg.b -= lsine.b;
328
y = -(lg.a + lg.b);
329
z = (y + lg.a) + lg.b;
330
y = __exp__D(y, z);
331
if (sgn < 0) y = -y;
332
return (y);
333
}
334
y = one-x;
335
if (one-y == x)
336
y = gamma(y);
337
else /* 1-x is inexact */
338
y = -x*gamma(-x);
339
if (sgn < 0) y = -y;
340
return (M_PI / (y*z));
341
}
342
343
#endif
344
345