Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
att
GitHub Repository: att/ast
Path: blob/master/src/lib/libast/uwin/lgamma.c
1811 views
1
#include "FEATURE/uwin"
2
3
#if !_UWIN || _lib_lgamma
4
5
void _STUB_lgamma(){}
6
7
#else
8
9
/*-
10
* Copyright (c) 1992, 1993
11
* The Regents of the University of California. All rights reserved.
12
*
13
* Redistribution and use in source and binary forms, with or without
14
* modification, are permitted provided that the following conditions
15
* are met:
16
* 1. Redistributions of source code must retain the above copyright
17
* notice, this list of conditions and the following disclaimer.
18
* 2. Redistributions in binary form must reproduce the above copyright
19
* notice, this list of conditions and the following disclaimer in the
20
* documentation and/or other materials provided with the distribution.
21
* 3. Neither the name of the University nor the names of its contributors
22
* may be used to endorse or promote products derived from this software
23
* without specific prior written permission.
24
*
25
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35
* SUCH DAMAGE.
36
*/
37
38
#ifndef lint
39
static char sccsid[] = "@(#)lgamma.c 8.2 (Berkeley) 11/30/93";
40
#endif /* not lint */
41
42
/*
43
* Coded by Peter McIlroy, Nov 1992;
44
*
45
* The financial support of UUNET Communications Services is greatfully
46
* acknowledged.
47
*/
48
49
#define gamma ______gamma
50
#define lgamma ______lgamma
51
52
#include <math.h>
53
#include <errno.h>
54
#include "mathimpl.h"
55
56
#undef gamma
57
#undef lgamma
58
59
/* Log gamma function.
60
* Error: x > 0 error < 1.3ulp.
61
* x > 4, error < 1ulp.
62
* x > 9, error < .6ulp.
63
* x < 0, all bets are off. (When G(x) ~ 1, log(G(x)) ~ 0)
64
* Method:
65
* x > 6:
66
* Use the asymptotic expansion (Stirling's Formula)
67
* 0 < x < 6:
68
* Use gamma(x+1) = x*gamma(x) for argument reduction.
69
* Use rational approximation in
70
* the range 1.2, 2.5
71
* Two approximations are used, one centered at the
72
* minimum to ensure monotonicity; one centered at 2
73
* to maintain small relative error.
74
* x < 0:
75
* Use the reflection formula,
76
* G(1-x)G(x) = PI/sin(PI*x)
77
* Special values:
78
* non-positive integer returns +Inf.
79
* NaN returns NaN
80
*/
81
static int endian;
82
#if defined(vax) || defined(tahoe)
83
#define _IEEE 0
84
/* double and float have same size exponent field */
85
#define TRUNC(x) x = (double) (float) (x)
86
#else
87
#define _IEEE 1
88
#define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
89
#define infnan(x) 0.0
90
#endif
91
92
static double small_lgam(double);
93
static double large_lgam(double);
94
static double neg_lgam(double);
95
static double zero = 0.0, one = 1.0;
96
int signgam;
97
98
#define UNDERFL (1e-1020 * 1e-1020)
99
100
#define LEFT (1.0 - (x0 + .25))
101
#define RIGHT (x0 - .218)
102
/*
103
* Constants for approximation in [1.244,1.712]
104
*/
105
#define x0 0.461632144968362356785
106
#define x0_lo -.000000000000000015522348162858676890521
107
#define a0_hi -0.12148629128932952880859
108
#define a0_lo .0000000007534799204229502
109
#define r0 -2.771227512955130520e-002
110
#define r1 -2.980729795228150847e-001
111
#define r2 -3.257411333183093394e-001
112
#define r3 -1.126814387531706041e-001
113
#define r4 -1.129130057170225562e-002
114
#define r5 -2.259650588213369095e-005
115
#define s0 1.714457160001714442e+000
116
#define s1 2.786469504618194648e+000
117
#define s2 1.564546365519179805e+000
118
#define s3 3.485846389981109850e-001
119
#define s4 2.467759345363656348e-002
120
/*
121
* Constants for approximation in [1.71, 2.5]
122
*/
123
#define a1_hi 4.227843350984671344505727574870e-01
124
#define a1_lo 4.670126436531227189e-18
125
#define p0 3.224670334241133695662995251041e-01
126
#define p1 3.569659696950364669021382724168e-01
127
#define p2 1.342918716072560025853732668111e-01
128
#define p3 1.950702176409779831089963408886e-02
129
#define p4 8.546740251667538090796227834289e-04
130
#define q0 1.000000000000000444089209850062e+00
131
#define q1 1.315850076960161985084596381057e+00
132
#define q2 6.274644311862156431658377186977e-01
133
#define q3 1.304706631926259297049597307705e-01
134
#define q4 1.102815279606722369265536798366e-02
135
#define q5 2.512690594856678929537585620579e-04
136
#define q6 -1.003597548112371003358107325598e-06
137
/*
138
* Stirling's Formula, adjusted for equal-ripple. x in [6,Inf].
139
*/
140
#define lns2pi .418938533204672741780329736405
141
#define pb0 8.33333333333333148296162562474e-02
142
#define pb1 -2.77777777774548123579378966497e-03
143
#define pb2 7.93650778754435631476282786423e-04
144
#define pb3 -5.95235082566672847950717262222e-04
145
#define pb4 8.41428560346653702135821806252e-04
146
#define pb5 -1.89773526463879200348872089421e-03
147
#define pb6 5.69394463439411649408050664078e-03
148
#define pb7 -1.44705562421428915453880392761e-02
149
150
extern __pure double lgamma(double x)
151
{
152
double r;
153
154
signgam = 1;
155
endian = ((*(int *) &one)) ? 1 : 0;
156
157
if (!finite(x))
158
if (_IEEE)
159
return (x+x);
160
else return (infnan(EDOM));
161
162
if (x > 6 + RIGHT) {
163
r = large_lgam(x);
164
return (r);
165
} else if (x > 1e-16)
166
return (small_lgam(x));
167
else if (x > -1e-16) {
168
if (x < 0)
169
signgam = -1, x = -x;
170
return (-log(x));
171
} else
172
return (neg_lgam(x));
173
}
174
175
static double
176
large_lgam(double x)
177
{
178
double z, p, x1;
179
struct Double t, u, v;
180
u = __log__D(x);
181
u.a -= 1.0;
182
if (x > 1e15) {
183
v.a = x - 0.5;
184
TRUNC(v.a);
185
v.b = (x - v.a) - 0.5;
186
t.a = u.a*v.a;
187
t.b = x*u.b + v.b*u.a;
188
if (_IEEE == 0 && !finite(t.a))
189
return(infnan(ERANGE));
190
return(t.a + t.b);
191
}
192
x1 = 1./x;
193
z = x1*x1;
194
p = pb0+z*(pb1+z*(pb2+z*(pb3+z*(pb4+z*(pb5+z*(pb6+z*pb7))))));
195
/* error in approximation = 2.8e-19 */
196
197
p = p*x1; /* error < 2.3e-18 absolute */
198
/* 0 < p < 1/64 (at x = 5.5) */
199
v.a = x = x - 0.5;
200
TRUNC(v.a); /* truncate v.a to 26 bits. */
201
v.b = x - v.a;
202
t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
203
t.b = v.b*u.a + x*u.b;
204
t.b += p; t.b += lns2pi; /* return t + lns2pi + p */
205
return (t.a + t.b);
206
}
207
208
static double
209
small_lgam(double x)
210
{
211
int x_int;
212
double y, z, t, r = 0, p, q, hi, lo;
213
struct Double rr;
214
x_int = (int)(x + .5);
215
y = x - x_int;
216
if (x_int <= 2 && y > RIGHT) {
217
t = y - x0;
218
y--; x_int++;
219
goto CONTINUE;
220
} else if (y < -LEFT) {
221
t = y +(1.0-x0);
222
CONTINUE:
223
z = t - x0_lo;
224
p = r0+z*(r1+z*(r2+z*(r3+z*(r4+z*r5))));
225
q = s0+z*(s1+z*(s2+z*(s3+z*s4)));
226
r = t*(z*(p/q) - x0_lo);
227
t = .5*t*t;
228
z = 1.0;
229
switch (x_int) {
230
case 6: z = (y + 5);
231
case 5: z *= (y + 4);
232
case 4: z *= (y + 3);
233
case 3: z *= (y + 2);
234
rr = __log__D(z);
235
rr.b += a0_lo; rr.a += a0_hi;
236
return(((r+rr.b)+t+rr.a));
237
case 2: return(((r+a0_lo)+t)+a0_hi);
238
case 0: r -= log1p(x);
239
default: rr = __log__D(x);
240
rr.a -= a0_hi; rr.b -= a0_lo;
241
return(((r - rr.b) + t) - rr.a);
242
}
243
} else {
244
p = p0+y*(p1+y*(p2+y*(p3+y*p4)));
245
q = q0+y*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*q6)))));
246
p = p*(y/q);
247
t = (double)(float) y;
248
z = y-t;
249
hi = (double)(float) (p+a1_hi);
250
lo = a1_hi - hi; lo += p; lo += a1_lo;
251
r = lo*y + z*hi; /* q + r = y*(a0+p/q) */
252
q = hi*t;
253
z = 1.0;
254
switch (x_int) {
255
case 6: z = (y + 5);
256
case 5: z *= (y + 4);
257
case 4: z *= (y + 3);
258
case 3: z *= (y + 2);
259
rr = __log__D(z);
260
r += rr.b; r += q;
261
return(rr.a + r);
262
case 2: return (q+ r);
263
case 0: rr = __log__D(x);
264
r -= rr.b; r -= log1p(x);
265
r += q; r-= rr.a;
266
return(r);
267
default: rr = __log__D(x);
268
r -= rr.b;
269
q -= rr.a;
270
return (r+q);
271
}
272
}
273
}
274
275
static double
276
neg_lgam(double x)
277
{
278
int xi;
279
double y, z, one = 1.0, zero = 0.0;
280
extern double gamma();
281
282
/* avoid destructive cancellation as much as possible */
283
if (x > -170) {
284
xi = (int)x;
285
if (xi == x)
286
if (_IEEE)
287
return(one/zero);
288
else
289
return(infnan(ERANGE));
290
y = gamma(x);
291
if (y < 0)
292
y = -y, signgam = -1;
293
return (log(y));
294
}
295
z = floor(x + .5);
296
if (z == x) { /* convention: G(-(integer)) -> +Inf */
297
if (_IEEE)
298
return (one/zero);
299
else
300
return (infnan(ERANGE));
301
}
302
y = .5*ceil(x);
303
if (y == ceil(y))
304
signgam = -1;
305
x = -x;
306
z = fabs(x + z); /* 0 < z <= .5 */
307
if (z < .25)
308
z = sin(M_PI*z);
309
else
310
z = cos(M_PI*(0.5-z));
311
z = log(M_PI/(z*x));
312
y = large_lgam(x);
313
return (z - y);
314
}
315
316
#endif
317
318