#include "FEATURE/uwin"12#if !_UWIN || _lib_log1p34void _STUB_log1p(){}56#else78/*9* Copyright (c) 1985, 199310* The Regents of the University of California. All rights reserved.11*12* Redistribution and use in source and binary forms, with or without13* modification, are permitted provided that the following conditions14* are met:15* 1. Redistributions of source code must retain the above copyright16* notice, this list of conditions and the following disclaimer.17* 2. Redistributions in binary form must reproduce the above copyright18* notice, this list of conditions and the following disclaimer in the19* documentation and/or other materials provided with the distribution.20* 3. Neither the name of the University nor the names of its contributors21* may be used to endorse or promote products derived from this software22* without specific prior written permission.23*24* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND25* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE26* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE27* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE28* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL29* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS30* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)31* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT32* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY33* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF34* SUCH DAMAGE.35*/3637#ifndef lint38static char sccsid[] = "@(#)log1p.c 8.1 (Berkeley) 6/4/93";39#endif /* not lint */4041/* LOG1P(x)42* RETURN THE LOGARITHM OF 1+x43* DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)44* CODED IN C BY K.C. NG, 1/19/85;45* REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.46*47* Required system supported functions:48* scalb(x,n)49* copysign(x,y)50* logb(x)51* finite(x)52*53* Required kernel function:54* log__L(z)55*56* Method :57* 1. Argument Reduction: find k and f such that58* 1+x = 2^k * (1+f),59* where sqrt(2)/2 < 1+f < sqrt(2) .60*61* 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)62* = 2s + 2/3 s**3 + 2/5 s**5 + .....,63* log(1+f) is computed by64*65* log(1+f) = 2s + s*log__L(s*s)66* where67* log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))68*69* See log__L() for the values of the coefficients.70*71* 3. Finally, log(1+x) = k*ln2 + log(1+f).72*73* Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers74* n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last75* 20 bits (for VAX D format), or the last 21 bits ( for IEEE76* double) is 0. This ensures n*ln2hi is exactly representable.77* 2. In step 1, f may not be representable. A correction term c78* for f is computed. It follows that the correction term for79* f - t (the leading term of log(1+f) in step 2) is c-c*x. We80* add this correction term to n*ln2lo to attenuate the error.81*82*83* Special cases:84* log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;85* log1p(INF) is +INF; log1p(-1) is -INF with signal;86* only log1p(0)=0 is exact for finite argument.87*88* Accuracy:89* log1p(x) returns the exact log(1+x) nearly rounded. In a test run90* with 1,536,000 random arguments on a VAX, the maximum observed91* error was .846 ulps (units in the last place).92*93* Constants:94* The hexadecimal values are the intended ones for the following constants.95* The decimal values may be used, provided that the compiler will convert96* from decimal to binary accurately enough to produce the hexadecimal values97* shown.98*/99100#include <errno.h>101#include "mathimpl.h"102103vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)104vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)105vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)106107ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)108ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)109ic(sqrt2, 1.4142135623730951455E0, 0, 1.6A09E667F3BCD)110111#ifdef vccast112#define ln2hi vccast(ln2hi)113#define ln2lo vccast(ln2lo)114#define sqrt2 vccast(sqrt2)115#endif116117extern double log1p(x)118double x;119{120const static double zero=0.0, negone= -1.0, one=1.0,121half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */122double z,s,t,c;123int k;124125#if !defined(vax)&&!defined(tahoe)126if(x!=x) return(x); /* x is NaN */127#endif /* !defined(vax)&&!defined(tahoe) */128129if(finite(x)) {130if( x > negone ) {131132/* argument reduction */133if(copysign(x,one)<small) return(x);134k=(int)logb(one+x); z=scalb(x,-k); t=scalb(one,-k);135if(z+t >= sqrt2 )136{ k += 1 ; z *= half; t *= half; }137t += negone; x = z + t;138c = (t-x)+z ; /* correction term for x */139140/* compute log(1+x) */141s = x/(2+x); t = x*x*half;142c += (k*ln2lo-c*x);143z = c+s*(t+__log__L(s*s));144x += (z - t) ;145146return(k*ln2hi+x);147}148/* end of if (x > negone) */149150else {151#if defined(vax)||defined(tahoe)152if ( x == negone )153return (infnan(-ERANGE)); /* -INF */154else155return (infnan(EDOM)); /* NaN */156#else /* defined(vax)||defined(tahoe) */157/* x = -1, return -INF with signal */158if ( x == negone ) return( negone/zero );159160/* negative argument for log, return NaN with signal */161else return ( zero / zero );162#endif /* defined(vax)||defined(tahoe) */163}164}165/* end of if (finite(x)) */166167/* log(-INF) is NaN */168else if(x<0)169return(zero/zero);170171/* log(+INF) is INF */172else return(x);173}174175#endif176177178