Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
att
GitHub Repository: att/ast
Path: blob/master/src/lib/libz/adler32.c
1808 views
1
/* adler32.c -- compute the Adler-32 checksum of a data stream
2
* Copyright (C) 1995-2004 Mark Adler
3
* For conditions of distribution and use, see copyright notice in zlib.h
4
*/
5
6
/* @(#) $Id$ */
7
8
#define ZLIB_INTERNAL
9
#include "zlib.h"
10
11
#define BASE 65521UL /* largest prime smaller than 65536 */
12
#define NMAX 5552
13
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
14
15
#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
16
#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
17
#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
18
#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
19
#define DO16(buf) DO8(buf,0); DO8(buf,8);
20
21
/* use NO_DIVIDE if your processor does not do division in hardware */
22
#ifdef NO_DIVIDE
23
# define MOD(a) \
24
do { \
25
if (a >= (BASE << 16)) a -= (BASE << 16); \
26
if (a >= (BASE << 15)) a -= (BASE << 15); \
27
if (a >= (BASE << 14)) a -= (BASE << 14); \
28
if (a >= (BASE << 13)) a -= (BASE << 13); \
29
if (a >= (BASE << 12)) a -= (BASE << 12); \
30
if (a >= (BASE << 11)) a -= (BASE << 11); \
31
if (a >= (BASE << 10)) a -= (BASE << 10); \
32
if (a >= (BASE << 9)) a -= (BASE << 9); \
33
if (a >= (BASE << 8)) a -= (BASE << 8); \
34
if (a >= (BASE << 7)) a -= (BASE << 7); \
35
if (a >= (BASE << 6)) a -= (BASE << 6); \
36
if (a >= (BASE << 5)) a -= (BASE << 5); \
37
if (a >= (BASE << 4)) a -= (BASE << 4); \
38
if (a >= (BASE << 3)) a -= (BASE << 3); \
39
if (a >= (BASE << 2)) a -= (BASE << 2); \
40
if (a >= (BASE << 1)) a -= (BASE << 1); \
41
if (a >= BASE) a -= BASE; \
42
} while (0)
43
# define MOD4(a) \
44
do { \
45
if (a >= (BASE << 4)) a -= (BASE << 4); \
46
if (a >= (BASE << 3)) a -= (BASE << 3); \
47
if (a >= (BASE << 2)) a -= (BASE << 2); \
48
if (a >= (BASE << 1)) a -= (BASE << 1); \
49
if (a >= BASE) a -= BASE; \
50
} while (0)
51
#else
52
# define MOD(a) a %= BASE
53
# define MOD4(a) a %= BASE
54
#endif
55
56
/* ========================================================================= */
57
uLong ZEXPORT adler32(adler, buf, len)
58
uLong adler;
59
const Bytef *buf;
60
uInt len;
61
{
62
unsigned long sum2;
63
unsigned n;
64
65
/* split Adler-32 into component sums */
66
sum2 = (adler >> 16) & 0xffff;
67
adler &= 0xffff;
68
69
/* in case user likes doing a byte at a time, keep it fast */
70
if (len == 1) {
71
adler += buf[0];
72
if (adler >= BASE)
73
adler -= BASE;
74
sum2 += adler;
75
if (sum2 >= BASE)
76
sum2 -= BASE;
77
return adler | (sum2 << 16);
78
}
79
80
/* initial Adler-32 value (deferred check for len == 1 speed) */
81
if (buf == Z_NULL)
82
return 1L;
83
84
/* in case short lengths are provided, keep it somewhat fast */
85
if (len < 16) {
86
while (len--) {
87
adler += *buf++;
88
sum2 += adler;
89
}
90
if (adler >= BASE)
91
adler -= BASE;
92
MOD4(sum2); /* only added so many BASE's */
93
return adler | (sum2 << 16);
94
}
95
96
/* do length NMAX blocks -- requires just one modulo operation */
97
while (len >= NMAX) {
98
len -= NMAX;
99
n = NMAX / 16; /* NMAX is divisible by 16 */
100
do {
101
DO16(buf); /* 16 sums unrolled */
102
buf += 16;
103
} while (--n);
104
MOD(adler);
105
MOD(sum2);
106
}
107
108
/* do remaining bytes (less than NMAX, still just one modulo) */
109
if (len) { /* avoid modulos if none remaining */
110
while (len >= 16) {
111
len -= 16;
112
DO16(buf);
113
buf += 16;
114
}
115
while (len--) {
116
adler += *buf++;
117
sum2 += adler;
118
}
119
MOD(adler);
120
MOD(sum2);
121
}
122
123
/* return recombined sums */
124
return adler | (sum2 << 16);
125
}
126
127
/* ========================================================================= */
128
uLong ZEXPORT adler32_combine(adler1, adler2, len2)
129
uLong adler1;
130
uLong adler2;
131
z_off_t len2;
132
{
133
unsigned long sum1;
134
unsigned long sum2;
135
unsigned rem;
136
137
/* the derivation of this formula is left as an exercise for the reader */
138
rem = (unsigned)(len2 % BASE);
139
sum1 = adler1 & 0xffff;
140
sum2 = rem * sum1;
141
MOD(sum2);
142
sum1 += (adler2 & 0xffff) + BASE - 1;
143
sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
144
if (sum1 > BASE) sum1 -= BASE;
145
if (sum1 > BASE) sum1 -= BASE;
146
if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
147
if (sum2 > BASE) sum2 -= BASE;
148
return sum1 | (sum2 << 16);
149
}
150
151