Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
att
GitHub Repository: att/ast
Path: blob/master/src/lib/libz/crc32.c
1808 views
1
/* crc32.c -- compute the CRC-32 of a data stream
2
* Copyright (C) 1995-2005 Mark Adler
3
* For conditions of distribution and use, see copyright notice in zlib.h
4
*
5
* Thanks to Rodney Brown <[email protected]> for his contribution of faster
6
* CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
7
* tables for updating the shift register in one step with three exclusive-ors
8
* instead of four steps with four exclusive-ors. This results in about a
9
* factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
10
*/
11
12
/* @(#) $Id$ */
13
14
/*
15
Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
16
protection on the static variables used to control the first-use generation
17
of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
18
first call get_crc_table() to initialize the tables before allowing more than
19
one thread to use crc32().
20
*/
21
22
#ifdef MAKECRCH
23
# include <stdio.h>
24
# ifndef DYNAMIC_CRC_TABLE
25
# define DYNAMIC_CRC_TABLE
26
# endif /* !DYNAMIC_CRC_TABLE */
27
#endif /* MAKECRCH */
28
29
#include "zutil.h" /* for ZLIB_STDC and FAR definitions */
30
31
#define local static
32
33
/* Find a four-byte integer type for crc32_little() and crc32_big(). */
34
#ifndef NOBYFOUR
35
# ifdef ZLIB_STDC /* need ANSI C limits.h to determine sizes */
36
# include <limits.h>
37
# define BYFOUR
38
# if (UINT_MAX == 0xffffffffUL)
39
typedef unsigned int u4;
40
# else
41
# if (ULONG_MAX == 0xffffffffUL)
42
typedef unsigned long u4;
43
# else
44
# if (USHRT_MAX == 0xffffffffUL)
45
typedef unsigned short u4;
46
# else
47
# undef BYFOUR /* can't find a four-byte integer type! */
48
# endif
49
# endif
50
# endif
51
# endif /* ZLIB_STDC */
52
#endif /* !NOBYFOUR */
53
54
/* Definitions for doing the crc four data bytes at a time. */
55
#ifdef BYFOUR
56
# define REV(w) (((w)>>24)+(((w)>>8)&0xff00)+ \
57
(((w)&0xff00)<<8)+(((w)&0xff)<<24))
58
local unsigned long crc32_little OF((unsigned long,
59
const unsigned char FAR *, unsigned));
60
local unsigned long crc32_big OF((unsigned long,
61
const unsigned char FAR *, unsigned));
62
# define TBLS 8
63
#else
64
# define TBLS 1
65
#endif /* BYFOUR */
66
67
/* Local functions for crc concatenation */
68
local unsigned long gf2_matrix_times OF((unsigned long *mat,
69
unsigned long vec));
70
local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
71
72
#ifdef DYNAMIC_CRC_TABLE
73
74
local volatile int crc_table_empty = 1;
75
local unsigned long FAR crc_table[TBLS][256];
76
local void make_crc_table OF((void));
77
#ifdef MAKECRCH
78
local void write_table OF((FILE *, const unsigned long FAR *));
79
#endif /* MAKECRCH */
80
/*
81
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
82
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
83
84
Polynomials over GF(2) are represented in binary, one bit per coefficient,
85
with the lowest powers in the most significant bit. Then adding polynomials
86
is just exclusive-or, and multiplying a polynomial by x is a right shift by
87
one. If we call the above polynomial p, and represent a byte as the
88
polynomial q, also with the lowest power in the most significant bit (so the
89
byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
90
where a mod b means the remainder after dividing a by b.
91
92
This calculation is done using the shift-register method of multiplying and
93
taking the remainder. The register is initialized to zero, and for each
94
incoming bit, x^32 is added mod p to the register if the bit is a one (where
95
x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
96
x (which is shifting right by one and adding x^32 mod p if the bit shifted
97
out is a one). We start with the highest power (least significant bit) of
98
q and repeat for all eight bits of q.
99
100
The first table is simply the CRC of all possible eight bit values. This is
101
all the information needed to generate CRCs on data a byte at a time for all
102
combinations of CRC register values and incoming bytes. The remaining tables
103
allow for word-at-a-time CRC calculation for both big-endian and little-
104
endian machines, where a word is four bytes.
105
*/
106
local void make_crc_table()
107
{
108
unsigned long c;
109
int n, k;
110
unsigned long poly; /* polynomial exclusive-or pattern */
111
/* terms of polynomial defining this crc (except x^32): */
112
static volatile int first = 1; /* flag to limit concurrent making */
113
static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
114
115
/* See if another task is already doing this (not thread-safe, but better
116
than nothing -- significantly reduces duration of vulnerability in
117
case the advice about DYNAMIC_CRC_TABLE is ignored) */
118
if (first) {
119
first = 0;
120
121
/* make exclusive-or pattern from polynomial (0xedb88320UL) */
122
poly = 0UL;
123
for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++)
124
poly |= 1UL << (31 - p[n]);
125
126
/* generate a crc for every 8-bit value */
127
for (n = 0; n < 256; n++) {
128
c = (unsigned long)n;
129
for (k = 0; k < 8; k++)
130
c = c & 1 ? poly ^ (c >> 1) : c >> 1;
131
crc_table[0][n] = c;
132
}
133
134
#ifdef BYFOUR
135
/* generate crc for each value followed by one, two, and three zeros,
136
and then the byte reversal of those as well as the first table */
137
for (n = 0; n < 256; n++) {
138
c = crc_table[0][n];
139
crc_table[4][n] = REV(c);
140
for (k = 1; k < 4; k++) {
141
c = crc_table[0][c & 0xff] ^ (c >> 8);
142
crc_table[k][n] = c;
143
crc_table[k + 4][n] = REV(c);
144
}
145
}
146
#endif /* BYFOUR */
147
148
crc_table_empty = 0;
149
}
150
else { /* not first */
151
/* wait for the other guy to finish (not efficient, but rare) */
152
while (crc_table_empty)
153
;
154
}
155
156
#ifdef MAKECRCH
157
/* write out CRC tables to crc32.h */
158
{
159
FILE *out;
160
161
out = fopen("crc32.h", "w");
162
if (out == NULL) return;
163
fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
164
fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
165
fprintf(out, "local const unsigned long FAR ");
166
fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
167
write_table(out, crc_table[0]);
168
# ifdef BYFOUR
169
fprintf(out, "#ifdef BYFOUR\n");
170
for (k = 1; k < 8; k++) {
171
fprintf(out, " },\n {\n");
172
write_table(out, crc_table[k]);
173
}
174
fprintf(out, "#endif\n");
175
# endif /* BYFOUR */
176
fprintf(out, " }\n};\n");
177
fclose(out);
178
}
179
#endif /* MAKECRCH */
180
}
181
182
#ifdef MAKECRCH
183
local void write_table(out, table)
184
FILE *out;
185
const unsigned long FAR *table;
186
{
187
int n;
188
189
for (n = 0; n < 256; n++)
190
fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", table[n],
191
n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
192
}
193
#endif /* MAKECRCH */
194
195
#else /* !DYNAMIC_CRC_TABLE */
196
/* ========================================================================
197
* Tables of CRC-32s of all single-byte values, made by make_crc_table().
198
*/
199
#include "crc32.h"
200
#endif /* DYNAMIC_CRC_TABLE */
201
202
/* =========================================================================
203
* This function can be used by asm versions of crc32()
204
*/
205
const unsigned long FAR * ZEXPORT get_crc_table()
206
{
207
#ifdef DYNAMIC_CRC_TABLE
208
if (crc_table_empty)
209
make_crc_table();
210
#endif /* DYNAMIC_CRC_TABLE */
211
return (const unsigned long FAR *)crc_table;
212
}
213
214
/* ========================================================================= */
215
#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
216
#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
217
218
/* ========================================================================= */
219
unsigned long ZEXPORT crc32(crc, buf, len)
220
unsigned long crc;
221
const unsigned char FAR *buf;
222
unsigned len;
223
{
224
if (buf == Z_NULL) return 0UL;
225
226
#ifdef DYNAMIC_CRC_TABLE
227
if (crc_table_empty)
228
make_crc_table();
229
#endif /* DYNAMIC_CRC_TABLE */
230
231
#ifdef BYFOUR
232
if (sizeof(void *) == sizeof(ptrdiff_t)) {
233
u4 endian;
234
235
endian = 1;
236
if (*((unsigned char *)(&endian)))
237
return crc32_little(crc, buf, len);
238
else
239
return crc32_big(crc, buf, len);
240
}
241
#endif /* BYFOUR */
242
crc = crc ^ 0xffffffffUL;
243
while (len >= 8) {
244
DO8;
245
len -= 8;
246
}
247
if (len) do {
248
DO1;
249
} while (--len);
250
return crc ^ 0xffffffffUL;
251
}
252
253
#ifdef BYFOUR
254
255
/* ========================================================================= */
256
#define DOLIT4 c ^= *buf4++; \
257
c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
258
crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
259
#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
260
261
/* ========================================================================= */
262
local unsigned long crc32_little(crc, buf, len)
263
unsigned long crc;
264
const unsigned char FAR *buf;
265
unsigned len;
266
{
267
register u4 c;
268
register const u4 FAR *buf4;
269
270
c = (u4)crc;
271
c = ~c;
272
while (len && ((ptrdiff_t)buf & 3)) {
273
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
274
len--;
275
}
276
277
buf4 = (const u4 FAR *)(const void FAR *)buf;
278
while (len >= 32) {
279
DOLIT32;
280
len -= 32;
281
}
282
while (len >= 4) {
283
DOLIT4;
284
len -= 4;
285
}
286
buf = (const unsigned char FAR *)buf4;
287
288
if (len) do {
289
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
290
} while (--len);
291
c = ~c;
292
return (unsigned long)c;
293
}
294
295
/* ========================================================================= */
296
#define DOBIG4 c ^= *++buf4; \
297
c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
298
crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
299
#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
300
301
/* ========================================================================= */
302
local unsigned long crc32_big(crc, buf, len)
303
unsigned long crc;
304
const unsigned char FAR *buf;
305
unsigned len;
306
{
307
register u4 c;
308
register const u4 FAR *buf4;
309
310
c = REV((u4)crc);
311
c = ~c;
312
while (len && ((ptrdiff_t)buf & 3)) {
313
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
314
len--;
315
}
316
317
buf4 = (const u4 FAR *)(const void FAR *)buf;
318
buf4--;
319
while (len >= 32) {
320
DOBIG32;
321
len -= 32;
322
}
323
while (len >= 4) {
324
DOBIG4;
325
len -= 4;
326
}
327
buf4++;
328
buf = (const unsigned char FAR *)buf4;
329
330
if (len) do {
331
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
332
} while (--len);
333
c = ~c;
334
return (unsigned long)(REV(c));
335
}
336
337
#endif /* BYFOUR */
338
339
#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
340
341
/* ========================================================================= */
342
local unsigned long gf2_matrix_times(mat, vec)
343
unsigned long *mat;
344
unsigned long vec;
345
{
346
unsigned long sum;
347
348
sum = 0;
349
while (vec) {
350
if (vec & 1)
351
sum ^= *mat;
352
vec >>= 1;
353
mat++;
354
}
355
return sum;
356
}
357
358
/* ========================================================================= */
359
local void gf2_matrix_square(square, mat)
360
unsigned long *square;
361
unsigned long *mat;
362
{
363
int n;
364
365
for (n = 0; n < GF2_DIM; n++)
366
square[n] = gf2_matrix_times(mat, mat[n]);
367
}
368
369
/* ========================================================================= */
370
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
371
uLong crc1;
372
uLong crc2;
373
z_off_t len2;
374
{
375
int n;
376
unsigned long row;
377
unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
378
unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
379
380
/* degenerate case */
381
if (len2 == 0)
382
return crc1;
383
384
/* put operator for one zero bit in odd */
385
odd[0] = 0xedb88320L; /* CRC-32 polynomial */
386
row = 1;
387
for (n = 1; n < GF2_DIM; n++) {
388
odd[n] = row;
389
row <<= 1;
390
}
391
392
/* put operator for two zero bits in even */
393
gf2_matrix_square(even, odd);
394
395
/* put operator for four zero bits in odd */
396
gf2_matrix_square(odd, even);
397
398
/* apply len2 zeros to crc1 (first square will put the operator for one
399
zero byte, eight zero bits, in even) */
400
do {
401
/* apply zeros operator for this bit of len2 */
402
gf2_matrix_square(even, odd);
403
if (len2 & 1)
404
crc1 = gf2_matrix_times(even, crc1);
405
len2 >>= 1;
406
407
/* if no more bits set, then done */
408
if (len2 == 0)
409
break;
410
411
/* another iteration of the loop with odd and even swapped */
412
gf2_matrix_square(odd, even);
413
if (len2 & 1)
414
crc1 = gf2_matrix_times(odd, crc1);
415
len2 >>= 1;
416
417
/* if no more bits set, then done */
418
} while (len2 != 0);
419
420
/* return combined crc */
421
crc1 ^= crc2;
422
return crc1;
423
}
424
425