Path: blob/master/modules/deepbooru_model.py
3055 views
import torch1import torch.nn as nn2import torch.nn.functional as F34from modules import devices56# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more789class DeepDanbooruModel(nn.Module):10def __init__(self):11super(DeepDanbooruModel, self).__init__()1213self.tags = []1415self.n_Conv_0 = nn.Conv2d(kernel_size=(7, 7), in_channels=3, out_channels=64, stride=(2, 2))16self.n_MaxPool_0 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))17self.n_Conv_1 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)18self.n_Conv_2 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=64)19self.n_Conv_3 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)20self.n_Conv_4 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)21self.n_Conv_5 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)22self.n_Conv_6 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)23self.n_Conv_7 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)24self.n_Conv_8 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)25self.n_Conv_9 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)26self.n_Conv_10 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)27self.n_Conv_11 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=512, stride=(2, 2))28self.n_Conv_12 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=128)29self.n_Conv_13 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128, stride=(2, 2))30self.n_Conv_14 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)31self.n_Conv_15 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)32self.n_Conv_16 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)33self.n_Conv_17 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)34self.n_Conv_18 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)35self.n_Conv_19 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)36self.n_Conv_20 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)37self.n_Conv_21 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)38self.n_Conv_22 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)39self.n_Conv_23 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)40self.n_Conv_24 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)41self.n_Conv_25 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)42self.n_Conv_26 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)43self.n_Conv_27 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)44self.n_Conv_28 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)45self.n_Conv_29 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)46self.n_Conv_30 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)47self.n_Conv_31 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)48self.n_Conv_32 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)49self.n_Conv_33 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)50self.n_Conv_34 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)51self.n_Conv_35 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)52self.n_Conv_36 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=1024, stride=(2, 2))53self.n_Conv_37 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=256)54self.n_Conv_38 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))55self.n_Conv_39 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)56self.n_Conv_40 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)57self.n_Conv_41 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)58self.n_Conv_42 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)59self.n_Conv_43 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)60self.n_Conv_44 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)61self.n_Conv_45 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)62self.n_Conv_46 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)63self.n_Conv_47 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)64self.n_Conv_48 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)65self.n_Conv_49 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)66self.n_Conv_50 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)67self.n_Conv_51 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)68self.n_Conv_52 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)69self.n_Conv_53 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)70self.n_Conv_54 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)71self.n_Conv_55 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)72self.n_Conv_56 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)73self.n_Conv_57 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)74self.n_Conv_58 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)75self.n_Conv_59 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)76self.n_Conv_60 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)77self.n_Conv_61 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)78self.n_Conv_62 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)79self.n_Conv_63 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)80self.n_Conv_64 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)81self.n_Conv_65 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)82self.n_Conv_66 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)83self.n_Conv_67 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)84self.n_Conv_68 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)85self.n_Conv_69 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)86self.n_Conv_70 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)87self.n_Conv_71 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)88self.n_Conv_72 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)89self.n_Conv_73 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)90self.n_Conv_74 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)91self.n_Conv_75 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)92self.n_Conv_76 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)93self.n_Conv_77 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)94self.n_Conv_78 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)95self.n_Conv_79 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)96self.n_Conv_80 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)97self.n_Conv_81 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)98self.n_Conv_82 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)99self.n_Conv_83 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)100self.n_Conv_84 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)101self.n_Conv_85 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)102self.n_Conv_86 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)103self.n_Conv_87 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)104self.n_Conv_88 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)105self.n_Conv_89 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)106self.n_Conv_90 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)107self.n_Conv_91 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)108self.n_Conv_92 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)109self.n_Conv_93 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)110self.n_Conv_94 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)111self.n_Conv_95 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)112self.n_Conv_96 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)113self.n_Conv_97 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)114self.n_Conv_98 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))115self.n_Conv_99 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)116self.n_Conv_100 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=1024, stride=(2, 2))117self.n_Conv_101 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)118self.n_Conv_102 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)119self.n_Conv_103 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)120self.n_Conv_104 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)121self.n_Conv_105 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)122self.n_Conv_106 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)123self.n_Conv_107 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)124self.n_Conv_108 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)125self.n_Conv_109 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)126self.n_Conv_110 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)127self.n_Conv_111 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)128self.n_Conv_112 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)129self.n_Conv_113 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)130self.n_Conv_114 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)131self.n_Conv_115 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)132self.n_Conv_116 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)133self.n_Conv_117 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)134self.n_Conv_118 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)135self.n_Conv_119 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)136self.n_Conv_120 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)137self.n_Conv_121 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)138self.n_Conv_122 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)139self.n_Conv_123 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)140self.n_Conv_124 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)141self.n_Conv_125 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)142self.n_Conv_126 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)143self.n_Conv_127 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)144self.n_Conv_128 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)145self.n_Conv_129 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)146self.n_Conv_130 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)147self.n_Conv_131 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)148self.n_Conv_132 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)149self.n_Conv_133 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)150self.n_Conv_134 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)151self.n_Conv_135 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)152self.n_Conv_136 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)153self.n_Conv_137 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)154self.n_Conv_138 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)155self.n_Conv_139 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)156self.n_Conv_140 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)157self.n_Conv_141 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)158self.n_Conv_142 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)159self.n_Conv_143 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)160self.n_Conv_144 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)161self.n_Conv_145 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)162self.n_Conv_146 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)163self.n_Conv_147 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)164self.n_Conv_148 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)165self.n_Conv_149 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)166self.n_Conv_150 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)167self.n_Conv_151 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)168self.n_Conv_152 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)169self.n_Conv_153 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)170self.n_Conv_154 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)171self.n_Conv_155 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)172self.n_Conv_156 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)173self.n_Conv_157 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)174self.n_Conv_158 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=2048, stride=(2, 2))175self.n_Conv_159 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=512)176self.n_Conv_160 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512, stride=(2, 2))177self.n_Conv_161 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)178self.n_Conv_162 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)179self.n_Conv_163 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)180self.n_Conv_164 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)181self.n_Conv_165 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)182self.n_Conv_166 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)183self.n_Conv_167 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)184self.n_Conv_168 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=4096, stride=(2, 2))185self.n_Conv_169 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=1024)186self.n_Conv_170 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024, stride=(2, 2))187self.n_Conv_171 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)188self.n_Conv_172 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)189self.n_Conv_173 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)190self.n_Conv_174 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)191self.n_Conv_175 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)192self.n_Conv_176 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)193self.n_Conv_177 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)194self.n_Conv_178 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=9176, bias=False)195196def forward(self, *inputs):197t_358, = inputs198t_359 = t_358.permute(*[0, 3, 1, 2])199t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)200t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded)201t_361 = F.relu(t_360)202t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))203t_362 = self.n_MaxPool_0(t_361)204t_363 = self.n_Conv_1(t_362)205t_364 = self.n_Conv_2(t_362)206t_365 = F.relu(t_364)207t_365_padded = F.pad(t_365, [1, 1, 1, 1], value=0)208t_366 = self.n_Conv_3(t_365_padded)209t_367 = F.relu(t_366)210t_368 = self.n_Conv_4(t_367)211t_369 = torch.add(t_368, t_363)212t_370 = F.relu(t_369)213t_371 = self.n_Conv_5(t_370)214t_372 = F.relu(t_371)215t_372_padded = F.pad(t_372, [1, 1, 1, 1], value=0)216t_373 = self.n_Conv_6(t_372_padded)217t_374 = F.relu(t_373)218t_375 = self.n_Conv_7(t_374)219t_376 = torch.add(t_375, t_370)220t_377 = F.relu(t_376)221t_378 = self.n_Conv_8(t_377)222t_379 = F.relu(t_378)223t_379_padded = F.pad(t_379, [1, 1, 1, 1], value=0)224t_380 = self.n_Conv_9(t_379_padded)225t_381 = F.relu(t_380)226t_382 = self.n_Conv_10(t_381)227t_383 = torch.add(t_382, t_377)228t_384 = F.relu(t_383)229t_385 = self.n_Conv_11(t_384)230t_386 = self.n_Conv_12(t_384)231t_387 = F.relu(t_386)232t_387_padded = F.pad(t_387, [0, 1, 0, 1], value=0)233t_388 = self.n_Conv_13(t_387_padded)234t_389 = F.relu(t_388)235t_390 = self.n_Conv_14(t_389)236t_391 = torch.add(t_390, t_385)237t_392 = F.relu(t_391)238t_393 = self.n_Conv_15(t_392)239t_394 = F.relu(t_393)240t_394_padded = F.pad(t_394, [1, 1, 1, 1], value=0)241t_395 = self.n_Conv_16(t_394_padded)242t_396 = F.relu(t_395)243t_397 = self.n_Conv_17(t_396)244t_398 = torch.add(t_397, t_392)245t_399 = F.relu(t_398)246t_400 = self.n_Conv_18(t_399)247t_401 = F.relu(t_400)248t_401_padded = F.pad(t_401, [1, 1, 1, 1], value=0)249t_402 = self.n_Conv_19(t_401_padded)250t_403 = F.relu(t_402)251t_404 = self.n_Conv_20(t_403)252t_405 = torch.add(t_404, t_399)253t_406 = F.relu(t_405)254t_407 = self.n_Conv_21(t_406)255t_408 = F.relu(t_407)256t_408_padded = F.pad(t_408, [1, 1, 1, 1], value=0)257t_409 = self.n_Conv_22(t_408_padded)258t_410 = F.relu(t_409)259t_411 = self.n_Conv_23(t_410)260t_412 = torch.add(t_411, t_406)261t_413 = F.relu(t_412)262t_414 = self.n_Conv_24(t_413)263t_415 = F.relu(t_414)264t_415_padded = F.pad(t_415, [1, 1, 1, 1], value=0)265t_416 = self.n_Conv_25(t_415_padded)266t_417 = F.relu(t_416)267t_418 = self.n_Conv_26(t_417)268t_419 = torch.add(t_418, t_413)269t_420 = F.relu(t_419)270t_421 = self.n_Conv_27(t_420)271t_422 = F.relu(t_421)272t_422_padded = F.pad(t_422, [1, 1, 1, 1], value=0)273t_423 = self.n_Conv_28(t_422_padded)274t_424 = F.relu(t_423)275t_425 = self.n_Conv_29(t_424)276t_426 = torch.add(t_425, t_420)277t_427 = F.relu(t_426)278t_428 = self.n_Conv_30(t_427)279t_429 = F.relu(t_428)280t_429_padded = F.pad(t_429, [1, 1, 1, 1], value=0)281t_430 = self.n_Conv_31(t_429_padded)282t_431 = F.relu(t_430)283t_432 = self.n_Conv_32(t_431)284t_433 = torch.add(t_432, t_427)285t_434 = F.relu(t_433)286t_435 = self.n_Conv_33(t_434)287t_436 = F.relu(t_435)288t_436_padded = F.pad(t_436, [1, 1, 1, 1], value=0)289t_437 = self.n_Conv_34(t_436_padded)290t_438 = F.relu(t_437)291t_439 = self.n_Conv_35(t_438)292t_440 = torch.add(t_439, t_434)293t_441 = F.relu(t_440)294t_442 = self.n_Conv_36(t_441)295t_443 = self.n_Conv_37(t_441)296t_444 = F.relu(t_443)297t_444_padded = F.pad(t_444, [0, 1, 0, 1], value=0)298t_445 = self.n_Conv_38(t_444_padded)299t_446 = F.relu(t_445)300t_447 = self.n_Conv_39(t_446)301t_448 = torch.add(t_447, t_442)302t_449 = F.relu(t_448)303t_450 = self.n_Conv_40(t_449)304t_451 = F.relu(t_450)305t_451_padded = F.pad(t_451, [1, 1, 1, 1], value=0)306t_452 = self.n_Conv_41(t_451_padded)307t_453 = F.relu(t_452)308t_454 = self.n_Conv_42(t_453)309t_455 = torch.add(t_454, t_449)310t_456 = F.relu(t_455)311t_457 = self.n_Conv_43(t_456)312t_458 = F.relu(t_457)313t_458_padded = F.pad(t_458, [1, 1, 1, 1], value=0)314t_459 = self.n_Conv_44(t_458_padded)315t_460 = F.relu(t_459)316t_461 = self.n_Conv_45(t_460)317t_462 = torch.add(t_461, t_456)318t_463 = F.relu(t_462)319t_464 = self.n_Conv_46(t_463)320t_465 = F.relu(t_464)321t_465_padded = F.pad(t_465, [1, 1, 1, 1], value=0)322t_466 = self.n_Conv_47(t_465_padded)323t_467 = F.relu(t_466)324t_468 = self.n_Conv_48(t_467)325t_469 = torch.add(t_468, t_463)326t_470 = F.relu(t_469)327t_471 = self.n_Conv_49(t_470)328t_472 = F.relu(t_471)329t_472_padded = F.pad(t_472, [1, 1, 1, 1], value=0)330t_473 = self.n_Conv_50(t_472_padded)331t_474 = F.relu(t_473)332t_475 = self.n_Conv_51(t_474)333t_476 = torch.add(t_475, t_470)334t_477 = F.relu(t_476)335t_478 = self.n_Conv_52(t_477)336t_479 = F.relu(t_478)337t_479_padded = F.pad(t_479, [1, 1, 1, 1], value=0)338t_480 = self.n_Conv_53(t_479_padded)339t_481 = F.relu(t_480)340t_482 = self.n_Conv_54(t_481)341t_483 = torch.add(t_482, t_477)342t_484 = F.relu(t_483)343t_485 = self.n_Conv_55(t_484)344t_486 = F.relu(t_485)345t_486_padded = F.pad(t_486, [1, 1, 1, 1], value=0)346t_487 = self.n_Conv_56(t_486_padded)347t_488 = F.relu(t_487)348t_489 = self.n_Conv_57(t_488)349t_490 = torch.add(t_489, t_484)350t_491 = F.relu(t_490)351t_492 = self.n_Conv_58(t_491)352t_493 = F.relu(t_492)353t_493_padded = F.pad(t_493, [1, 1, 1, 1], value=0)354t_494 = self.n_Conv_59(t_493_padded)355t_495 = F.relu(t_494)356t_496 = self.n_Conv_60(t_495)357t_497 = torch.add(t_496, t_491)358t_498 = F.relu(t_497)359t_499 = self.n_Conv_61(t_498)360t_500 = F.relu(t_499)361t_500_padded = F.pad(t_500, [1, 1, 1, 1], value=0)362t_501 = self.n_Conv_62(t_500_padded)363t_502 = F.relu(t_501)364t_503 = self.n_Conv_63(t_502)365t_504 = torch.add(t_503, t_498)366t_505 = F.relu(t_504)367t_506 = self.n_Conv_64(t_505)368t_507 = F.relu(t_506)369t_507_padded = F.pad(t_507, [1, 1, 1, 1], value=0)370t_508 = self.n_Conv_65(t_507_padded)371t_509 = F.relu(t_508)372t_510 = self.n_Conv_66(t_509)373t_511 = torch.add(t_510, t_505)374t_512 = F.relu(t_511)375t_513 = self.n_Conv_67(t_512)376t_514 = F.relu(t_513)377t_514_padded = F.pad(t_514, [1, 1, 1, 1], value=0)378t_515 = self.n_Conv_68(t_514_padded)379t_516 = F.relu(t_515)380t_517 = self.n_Conv_69(t_516)381t_518 = torch.add(t_517, t_512)382t_519 = F.relu(t_518)383t_520 = self.n_Conv_70(t_519)384t_521 = F.relu(t_520)385t_521_padded = F.pad(t_521, [1, 1, 1, 1], value=0)386t_522 = self.n_Conv_71(t_521_padded)387t_523 = F.relu(t_522)388t_524 = self.n_Conv_72(t_523)389t_525 = torch.add(t_524, t_519)390t_526 = F.relu(t_525)391t_527 = self.n_Conv_73(t_526)392t_528 = F.relu(t_527)393t_528_padded = F.pad(t_528, [1, 1, 1, 1], value=0)394t_529 = self.n_Conv_74(t_528_padded)395t_530 = F.relu(t_529)396t_531 = self.n_Conv_75(t_530)397t_532 = torch.add(t_531, t_526)398t_533 = F.relu(t_532)399t_534 = self.n_Conv_76(t_533)400t_535 = F.relu(t_534)401t_535_padded = F.pad(t_535, [1, 1, 1, 1], value=0)402t_536 = self.n_Conv_77(t_535_padded)403t_537 = F.relu(t_536)404t_538 = self.n_Conv_78(t_537)405t_539 = torch.add(t_538, t_533)406t_540 = F.relu(t_539)407t_541 = self.n_Conv_79(t_540)408t_542 = F.relu(t_541)409t_542_padded = F.pad(t_542, [1, 1, 1, 1], value=0)410t_543 = self.n_Conv_80(t_542_padded)411t_544 = F.relu(t_543)412t_545 = self.n_Conv_81(t_544)413t_546 = torch.add(t_545, t_540)414t_547 = F.relu(t_546)415t_548 = self.n_Conv_82(t_547)416t_549 = F.relu(t_548)417t_549_padded = F.pad(t_549, [1, 1, 1, 1], value=0)418t_550 = self.n_Conv_83(t_549_padded)419t_551 = F.relu(t_550)420t_552 = self.n_Conv_84(t_551)421t_553 = torch.add(t_552, t_547)422t_554 = F.relu(t_553)423t_555 = self.n_Conv_85(t_554)424t_556 = F.relu(t_555)425t_556_padded = F.pad(t_556, [1, 1, 1, 1], value=0)426t_557 = self.n_Conv_86(t_556_padded)427t_558 = F.relu(t_557)428t_559 = self.n_Conv_87(t_558)429t_560 = torch.add(t_559, t_554)430t_561 = F.relu(t_560)431t_562 = self.n_Conv_88(t_561)432t_563 = F.relu(t_562)433t_563_padded = F.pad(t_563, [1, 1, 1, 1], value=0)434t_564 = self.n_Conv_89(t_563_padded)435t_565 = F.relu(t_564)436t_566 = self.n_Conv_90(t_565)437t_567 = torch.add(t_566, t_561)438t_568 = F.relu(t_567)439t_569 = self.n_Conv_91(t_568)440t_570 = F.relu(t_569)441t_570_padded = F.pad(t_570, [1, 1, 1, 1], value=0)442t_571 = self.n_Conv_92(t_570_padded)443t_572 = F.relu(t_571)444t_573 = self.n_Conv_93(t_572)445t_574 = torch.add(t_573, t_568)446t_575 = F.relu(t_574)447t_576 = self.n_Conv_94(t_575)448t_577 = F.relu(t_576)449t_577_padded = F.pad(t_577, [1, 1, 1, 1], value=0)450t_578 = self.n_Conv_95(t_577_padded)451t_579 = F.relu(t_578)452t_580 = self.n_Conv_96(t_579)453t_581 = torch.add(t_580, t_575)454t_582 = F.relu(t_581)455t_583 = self.n_Conv_97(t_582)456t_584 = F.relu(t_583)457t_584_padded = F.pad(t_584, [0, 1, 0, 1], value=0)458t_585 = self.n_Conv_98(t_584_padded)459t_586 = F.relu(t_585)460t_587 = self.n_Conv_99(t_586)461t_588 = self.n_Conv_100(t_582)462t_589 = torch.add(t_587, t_588)463t_590 = F.relu(t_589)464t_591 = self.n_Conv_101(t_590)465t_592 = F.relu(t_591)466t_592_padded = F.pad(t_592, [1, 1, 1, 1], value=0)467t_593 = self.n_Conv_102(t_592_padded)468t_594 = F.relu(t_593)469t_595 = self.n_Conv_103(t_594)470t_596 = torch.add(t_595, t_590)471t_597 = F.relu(t_596)472t_598 = self.n_Conv_104(t_597)473t_599 = F.relu(t_598)474t_599_padded = F.pad(t_599, [1, 1, 1, 1], value=0)475t_600 = self.n_Conv_105(t_599_padded)476t_601 = F.relu(t_600)477t_602 = self.n_Conv_106(t_601)478t_603 = torch.add(t_602, t_597)479t_604 = F.relu(t_603)480t_605 = self.n_Conv_107(t_604)481t_606 = F.relu(t_605)482t_606_padded = F.pad(t_606, [1, 1, 1, 1], value=0)483t_607 = self.n_Conv_108(t_606_padded)484t_608 = F.relu(t_607)485t_609 = self.n_Conv_109(t_608)486t_610 = torch.add(t_609, t_604)487t_611 = F.relu(t_610)488t_612 = self.n_Conv_110(t_611)489t_613 = F.relu(t_612)490t_613_padded = F.pad(t_613, [1, 1, 1, 1], value=0)491t_614 = self.n_Conv_111(t_613_padded)492t_615 = F.relu(t_614)493t_616 = self.n_Conv_112(t_615)494t_617 = torch.add(t_616, t_611)495t_618 = F.relu(t_617)496t_619 = self.n_Conv_113(t_618)497t_620 = F.relu(t_619)498t_620_padded = F.pad(t_620, [1, 1, 1, 1], value=0)499t_621 = self.n_Conv_114(t_620_padded)500t_622 = F.relu(t_621)501t_623 = self.n_Conv_115(t_622)502t_624 = torch.add(t_623, t_618)503t_625 = F.relu(t_624)504t_626 = self.n_Conv_116(t_625)505t_627 = F.relu(t_626)506t_627_padded = F.pad(t_627, [1, 1, 1, 1], value=0)507t_628 = self.n_Conv_117(t_627_padded)508t_629 = F.relu(t_628)509t_630 = self.n_Conv_118(t_629)510t_631 = torch.add(t_630, t_625)511t_632 = F.relu(t_631)512t_633 = self.n_Conv_119(t_632)513t_634 = F.relu(t_633)514t_634_padded = F.pad(t_634, [1, 1, 1, 1], value=0)515t_635 = self.n_Conv_120(t_634_padded)516t_636 = F.relu(t_635)517t_637 = self.n_Conv_121(t_636)518t_638 = torch.add(t_637, t_632)519t_639 = F.relu(t_638)520t_640 = self.n_Conv_122(t_639)521t_641 = F.relu(t_640)522t_641_padded = F.pad(t_641, [1, 1, 1, 1], value=0)523t_642 = self.n_Conv_123(t_641_padded)524t_643 = F.relu(t_642)525t_644 = self.n_Conv_124(t_643)526t_645 = torch.add(t_644, t_639)527t_646 = F.relu(t_645)528t_647 = self.n_Conv_125(t_646)529t_648 = F.relu(t_647)530t_648_padded = F.pad(t_648, [1, 1, 1, 1], value=0)531t_649 = self.n_Conv_126(t_648_padded)532t_650 = F.relu(t_649)533t_651 = self.n_Conv_127(t_650)534t_652 = torch.add(t_651, t_646)535t_653 = F.relu(t_652)536t_654 = self.n_Conv_128(t_653)537t_655 = F.relu(t_654)538t_655_padded = F.pad(t_655, [1, 1, 1, 1], value=0)539t_656 = self.n_Conv_129(t_655_padded)540t_657 = F.relu(t_656)541t_658 = self.n_Conv_130(t_657)542t_659 = torch.add(t_658, t_653)543t_660 = F.relu(t_659)544t_661 = self.n_Conv_131(t_660)545t_662 = F.relu(t_661)546t_662_padded = F.pad(t_662, [1, 1, 1, 1], value=0)547t_663 = self.n_Conv_132(t_662_padded)548t_664 = F.relu(t_663)549t_665 = self.n_Conv_133(t_664)550t_666 = torch.add(t_665, t_660)551t_667 = F.relu(t_666)552t_668 = self.n_Conv_134(t_667)553t_669 = F.relu(t_668)554t_669_padded = F.pad(t_669, [1, 1, 1, 1], value=0)555t_670 = self.n_Conv_135(t_669_padded)556t_671 = F.relu(t_670)557t_672 = self.n_Conv_136(t_671)558t_673 = torch.add(t_672, t_667)559t_674 = F.relu(t_673)560t_675 = self.n_Conv_137(t_674)561t_676 = F.relu(t_675)562t_676_padded = F.pad(t_676, [1, 1, 1, 1], value=0)563t_677 = self.n_Conv_138(t_676_padded)564t_678 = F.relu(t_677)565t_679 = self.n_Conv_139(t_678)566t_680 = torch.add(t_679, t_674)567t_681 = F.relu(t_680)568t_682 = self.n_Conv_140(t_681)569t_683 = F.relu(t_682)570t_683_padded = F.pad(t_683, [1, 1, 1, 1], value=0)571t_684 = self.n_Conv_141(t_683_padded)572t_685 = F.relu(t_684)573t_686 = self.n_Conv_142(t_685)574t_687 = torch.add(t_686, t_681)575t_688 = F.relu(t_687)576t_689 = self.n_Conv_143(t_688)577t_690 = F.relu(t_689)578t_690_padded = F.pad(t_690, [1, 1, 1, 1], value=0)579t_691 = self.n_Conv_144(t_690_padded)580t_692 = F.relu(t_691)581t_693 = self.n_Conv_145(t_692)582t_694 = torch.add(t_693, t_688)583t_695 = F.relu(t_694)584t_696 = self.n_Conv_146(t_695)585t_697 = F.relu(t_696)586t_697_padded = F.pad(t_697, [1, 1, 1, 1], value=0)587t_698 = self.n_Conv_147(t_697_padded)588t_699 = F.relu(t_698)589t_700 = self.n_Conv_148(t_699)590t_701 = torch.add(t_700, t_695)591t_702 = F.relu(t_701)592t_703 = self.n_Conv_149(t_702)593t_704 = F.relu(t_703)594t_704_padded = F.pad(t_704, [1, 1, 1, 1], value=0)595t_705 = self.n_Conv_150(t_704_padded)596t_706 = F.relu(t_705)597t_707 = self.n_Conv_151(t_706)598t_708 = torch.add(t_707, t_702)599t_709 = F.relu(t_708)600t_710 = self.n_Conv_152(t_709)601t_711 = F.relu(t_710)602t_711_padded = F.pad(t_711, [1, 1, 1, 1], value=0)603t_712 = self.n_Conv_153(t_711_padded)604t_713 = F.relu(t_712)605t_714 = self.n_Conv_154(t_713)606t_715 = torch.add(t_714, t_709)607t_716 = F.relu(t_715)608t_717 = self.n_Conv_155(t_716)609t_718 = F.relu(t_717)610t_718_padded = F.pad(t_718, [1, 1, 1, 1], value=0)611t_719 = self.n_Conv_156(t_718_padded)612t_720 = F.relu(t_719)613t_721 = self.n_Conv_157(t_720)614t_722 = torch.add(t_721, t_716)615t_723 = F.relu(t_722)616t_724 = self.n_Conv_158(t_723)617t_725 = self.n_Conv_159(t_723)618t_726 = F.relu(t_725)619t_726_padded = F.pad(t_726, [0, 1, 0, 1], value=0)620t_727 = self.n_Conv_160(t_726_padded)621t_728 = F.relu(t_727)622t_729 = self.n_Conv_161(t_728)623t_730 = torch.add(t_729, t_724)624t_731 = F.relu(t_730)625t_732 = self.n_Conv_162(t_731)626t_733 = F.relu(t_732)627t_733_padded = F.pad(t_733, [1, 1, 1, 1], value=0)628t_734 = self.n_Conv_163(t_733_padded)629t_735 = F.relu(t_734)630t_736 = self.n_Conv_164(t_735)631t_737 = torch.add(t_736, t_731)632t_738 = F.relu(t_737)633t_739 = self.n_Conv_165(t_738)634t_740 = F.relu(t_739)635t_740_padded = F.pad(t_740, [1, 1, 1, 1], value=0)636t_741 = self.n_Conv_166(t_740_padded)637t_742 = F.relu(t_741)638t_743 = self.n_Conv_167(t_742)639t_744 = torch.add(t_743, t_738)640t_745 = F.relu(t_744)641t_746 = self.n_Conv_168(t_745)642t_747 = self.n_Conv_169(t_745)643t_748 = F.relu(t_747)644t_748_padded = F.pad(t_748, [0, 1, 0, 1], value=0)645t_749 = self.n_Conv_170(t_748_padded)646t_750 = F.relu(t_749)647t_751 = self.n_Conv_171(t_750)648t_752 = torch.add(t_751, t_746)649t_753 = F.relu(t_752)650t_754 = self.n_Conv_172(t_753)651t_755 = F.relu(t_754)652t_755_padded = F.pad(t_755, [1, 1, 1, 1], value=0)653t_756 = self.n_Conv_173(t_755_padded)654t_757 = F.relu(t_756)655t_758 = self.n_Conv_174(t_757)656t_759 = torch.add(t_758, t_753)657t_760 = F.relu(t_759)658t_761 = self.n_Conv_175(t_760)659t_762 = F.relu(t_761)660t_762_padded = F.pad(t_762, [1, 1, 1, 1], value=0)661t_763 = self.n_Conv_176(t_762_padded)662t_764 = F.relu(t_763)663t_765 = self.n_Conv_177(t_764)664t_766 = torch.add(t_765, t_760)665t_767 = F.relu(t_766)666t_768 = self.n_Conv_178(t_767)667t_769 = F.avg_pool2d(t_768, kernel_size=t_768.shape[-2:])668t_770 = torch.squeeze(t_769, 3)669t_770 = torch.squeeze(t_770, 2)670t_771 = torch.sigmoid(t_770)671return t_771672673def load_state_dict(self, state_dict, **kwargs):674self.tags = state_dict.get('tags', [])675676super(DeepDanbooruModel, self).load_state_dict({k: v for k, v in state_dict.items() if k != 'tags'})677678679680