Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
automatic1111
GitHub Repository: automatic1111/stable-diffusion-webui
Path: blob/master/modules/deepbooru_model.py
3055 views
1
import torch
2
import torch.nn as nn
3
import torch.nn.functional as F
4
5
from modules import devices
6
7
# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
8
9
10
class DeepDanbooruModel(nn.Module):
11
def __init__(self):
12
super(DeepDanbooruModel, self).__init__()
13
14
self.tags = []
15
16
self.n_Conv_0 = nn.Conv2d(kernel_size=(7, 7), in_channels=3, out_channels=64, stride=(2, 2))
17
self.n_MaxPool_0 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
18
self.n_Conv_1 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
19
self.n_Conv_2 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=64)
20
self.n_Conv_3 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
21
self.n_Conv_4 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
22
self.n_Conv_5 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
23
self.n_Conv_6 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
24
self.n_Conv_7 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
25
self.n_Conv_8 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
26
self.n_Conv_9 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
27
self.n_Conv_10 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
28
self.n_Conv_11 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=512, stride=(2, 2))
29
self.n_Conv_12 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=128)
30
self.n_Conv_13 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128, stride=(2, 2))
31
self.n_Conv_14 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
32
self.n_Conv_15 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
33
self.n_Conv_16 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
34
self.n_Conv_17 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
35
self.n_Conv_18 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
36
self.n_Conv_19 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
37
self.n_Conv_20 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
38
self.n_Conv_21 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
39
self.n_Conv_22 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
40
self.n_Conv_23 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
41
self.n_Conv_24 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
42
self.n_Conv_25 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
43
self.n_Conv_26 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
44
self.n_Conv_27 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
45
self.n_Conv_28 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
46
self.n_Conv_29 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
47
self.n_Conv_30 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
48
self.n_Conv_31 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
49
self.n_Conv_32 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
50
self.n_Conv_33 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
51
self.n_Conv_34 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
52
self.n_Conv_35 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
53
self.n_Conv_36 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=1024, stride=(2, 2))
54
self.n_Conv_37 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=256)
55
self.n_Conv_38 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
56
self.n_Conv_39 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
57
self.n_Conv_40 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
58
self.n_Conv_41 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
59
self.n_Conv_42 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
60
self.n_Conv_43 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
61
self.n_Conv_44 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
62
self.n_Conv_45 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
63
self.n_Conv_46 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
64
self.n_Conv_47 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
65
self.n_Conv_48 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
66
self.n_Conv_49 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
67
self.n_Conv_50 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
68
self.n_Conv_51 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
69
self.n_Conv_52 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
70
self.n_Conv_53 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
71
self.n_Conv_54 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
72
self.n_Conv_55 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
73
self.n_Conv_56 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
74
self.n_Conv_57 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
75
self.n_Conv_58 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
76
self.n_Conv_59 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
77
self.n_Conv_60 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
78
self.n_Conv_61 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
79
self.n_Conv_62 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
80
self.n_Conv_63 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
81
self.n_Conv_64 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
82
self.n_Conv_65 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
83
self.n_Conv_66 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
84
self.n_Conv_67 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
85
self.n_Conv_68 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
86
self.n_Conv_69 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
87
self.n_Conv_70 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
88
self.n_Conv_71 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
89
self.n_Conv_72 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
90
self.n_Conv_73 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
91
self.n_Conv_74 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
92
self.n_Conv_75 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
93
self.n_Conv_76 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
94
self.n_Conv_77 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
95
self.n_Conv_78 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
96
self.n_Conv_79 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
97
self.n_Conv_80 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
98
self.n_Conv_81 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
99
self.n_Conv_82 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
100
self.n_Conv_83 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
101
self.n_Conv_84 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
102
self.n_Conv_85 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
103
self.n_Conv_86 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
104
self.n_Conv_87 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
105
self.n_Conv_88 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
106
self.n_Conv_89 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
107
self.n_Conv_90 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
108
self.n_Conv_91 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
109
self.n_Conv_92 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
110
self.n_Conv_93 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
111
self.n_Conv_94 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
112
self.n_Conv_95 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
113
self.n_Conv_96 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
114
self.n_Conv_97 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
115
self.n_Conv_98 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
116
self.n_Conv_99 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
117
self.n_Conv_100 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=1024, stride=(2, 2))
118
self.n_Conv_101 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
119
self.n_Conv_102 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
120
self.n_Conv_103 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
121
self.n_Conv_104 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
122
self.n_Conv_105 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
123
self.n_Conv_106 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
124
self.n_Conv_107 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
125
self.n_Conv_108 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
126
self.n_Conv_109 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
127
self.n_Conv_110 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
128
self.n_Conv_111 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
129
self.n_Conv_112 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
130
self.n_Conv_113 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
131
self.n_Conv_114 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
132
self.n_Conv_115 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
133
self.n_Conv_116 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
134
self.n_Conv_117 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
135
self.n_Conv_118 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
136
self.n_Conv_119 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
137
self.n_Conv_120 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
138
self.n_Conv_121 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
139
self.n_Conv_122 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
140
self.n_Conv_123 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
141
self.n_Conv_124 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
142
self.n_Conv_125 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
143
self.n_Conv_126 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
144
self.n_Conv_127 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
145
self.n_Conv_128 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
146
self.n_Conv_129 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
147
self.n_Conv_130 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
148
self.n_Conv_131 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
149
self.n_Conv_132 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
150
self.n_Conv_133 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
151
self.n_Conv_134 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
152
self.n_Conv_135 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
153
self.n_Conv_136 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
154
self.n_Conv_137 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
155
self.n_Conv_138 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
156
self.n_Conv_139 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
157
self.n_Conv_140 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
158
self.n_Conv_141 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
159
self.n_Conv_142 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
160
self.n_Conv_143 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
161
self.n_Conv_144 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
162
self.n_Conv_145 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
163
self.n_Conv_146 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
164
self.n_Conv_147 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
165
self.n_Conv_148 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
166
self.n_Conv_149 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
167
self.n_Conv_150 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
168
self.n_Conv_151 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
169
self.n_Conv_152 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
170
self.n_Conv_153 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
171
self.n_Conv_154 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
172
self.n_Conv_155 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
173
self.n_Conv_156 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
174
self.n_Conv_157 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
175
self.n_Conv_158 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=2048, stride=(2, 2))
176
self.n_Conv_159 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=512)
177
self.n_Conv_160 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512, stride=(2, 2))
178
self.n_Conv_161 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
179
self.n_Conv_162 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
180
self.n_Conv_163 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
181
self.n_Conv_164 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
182
self.n_Conv_165 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
183
self.n_Conv_166 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
184
self.n_Conv_167 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
185
self.n_Conv_168 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=4096, stride=(2, 2))
186
self.n_Conv_169 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=1024)
187
self.n_Conv_170 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024, stride=(2, 2))
188
self.n_Conv_171 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
189
self.n_Conv_172 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
190
self.n_Conv_173 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
191
self.n_Conv_174 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
192
self.n_Conv_175 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
193
self.n_Conv_176 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
194
self.n_Conv_177 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
195
self.n_Conv_178 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=9176, bias=False)
196
197
def forward(self, *inputs):
198
t_358, = inputs
199
t_359 = t_358.permute(*[0, 3, 1, 2])
200
t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
201
t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded)
202
t_361 = F.relu(t_360)
203
t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
204
t_362 = self.n_MaxPool_0(t_361)
205
t_363 = self.n_Conv_1(t_362)
206
t_364 = self.n_Conv_2(t_362)
207
t_365 = F.relu(t_364)
208
t_365_padded = F.pad(t_365, [1, 1, 1, 1], value=0)
209
t_366 = self.n_Conv_3(t_365_padded)
210
t_367 = F.relu(t_366)
211
t_368 = self.n_Conv_4(t_367)
212
t_369 = torch.add(t_368, t_363)
213
t_370 = F.relu(t_369)
214
t_371 = self.n_Conv_5(t_370)
215
t_372 = F.relu(t_371)
216
t_372_padded = F.pad(t_372, [1, 1, 1, 1], value=0)
217
t_373 = self.n_Conv_6(t_372_padded)
218
t_374 = F.relu(t_373)
219
t_375 = self.n_Conv_7(t_374)
220
t_376 = torch.add(t_375, t_370)
221
t_377 = F.relu(t_376)
222
t_378 = self.n_Conv_8(t_377)
223
t_379 = F.relu(t_378)
224
t_379_padded = F.pad(t_379, [1, 1, 1, 1], value=0)
225
t_380 = self.n_Conv_9(t_379_padded)
226
t_381 = F.relu(t_380)
227
t_382 = self.n_Conv_10(t_381)
228
t_383 = torch.add(t_382, t_377)
229
t_384 = F.relu(t_383)
230
t_385 = self.n_Conv_11(t_384)
231
t_386 = self.n_Conv_12(t_384)
232
t_387 = F.relu(t_386)
233
t_387_padded = F.pad(t_387, [0, 1, 0, 1], value=0)
234
t_388 = self.n_Conv_13(t_387_padded)
235
t_389 = F.relu(t_388)
236
t_390 = self.n_Conv_14(t_389)
237
t_391 = torch.add(t_390, t_385)
238
t_392 = F.relu(t_391)
239
t_393 = self.n_Conv_15(t_392)
240
t_394 = F.relu(t_393)
241
t_394_padded = F.pad(t_394, [1, 1, 1, 1], value=0)
242
t_395 = self.n_Conv_16(t_394_padded)
243
t_396 = F.relu(t_395)
244
t_397 = self.n_Conv_17(t_396)
245
t_398 = torch.add(t_397, t_392)
246
t_399 = F.relu(t_398)
247
t_400 = self.n_Conv_18(t_399)
248
t_401 = F.relu(t_400)
249
t_401_padded = F.pad(t_401, [1, 1, 1, 1], value=0)
250
t_402 = self.n_Conv_19(t_401_padded)
251
t_403 = F.relu(t_402)
252
t_404 = self.n_Conv_20(t_403)
253
t_405 = torch.add(t_404, t_399)
254
t_406 = F.relu(t_405)
255
t_407 = self.n_Conv_21(t_406)
256
t_408 = F.relu(t_407)
257
t_408_padded = F.pad(t_408, [1, 1, 1, 1], value=0)
258
t_409 = self.n_Conv_22(t_408_padded)
259
t_410 = F.relu(t_409)
260
t_411 = self.n_Conv_23(t_410)
261
t_412 = torch.add(t_411, t_406)
262
t_413 = F.relu(t_412)
263
t_414 = self.n_Conv_24(t_413)
264
t_415 = F.relu(t_414)
265
t_415_padded = F.pad(t_415, [1, 1, 1, 1], value=0)
266
t_416 = self.n_Conv_25(t_415_padded)
267
t_417 = F.relu(t_416)
268
t_418 = self.n_Conv_26(t_417)
269
t_419 = torch.add(t_418, t_413)
270
t_420 = F.relu(t_419)
271
t_421 = self.n_Conv_27(t_420)
272
t_422 = F.relu(t_421)
273
t_422_padded = F.pad(t_422, [1, 1, 1, 1], value=0)
274
t_423 = self.n_Conv_28(t_422_padded)
275
t_424 = F.relu(t_423)
276
t_425 = self.n_Conv_29(t_424)
277
t_426 = torch.add(t_425, t_420)
278
t_427 = F.relu(t_426)
279
t_428 = self.n_Conv_30(t_427)
280
t_429 = F.relu(t_428)
281
t_429_padded = F.pad(t_429, [1, 1, 1, 1], value=0)
282
t_430 = self.n_Conv_31(t_429_padded)
283
t_431 = F.relu(t_430)
284
t_432 = self.n_Conv_32(t_431)
285
t_433 = torch.add(t_432, t_427)
286
t_434 = F.relu(t_433)
287
t_435 = self.n_Conv_33(t_434)
288
t_436 = F.relu(t_435)
289
t_436_padded = F.pad(t_436, [1, 1, 1, 1], value=0)
290
t_437 = self.n_Conv_34(t_436_padded)
291
t_438 = F.relu(t_437)
292
t_439 = self.n_Conv_35(t_438)
293
t_440 = torch.add(t_439, t_434)
294
t_441 = F.relu(t_440)
295
t_442 = self.n_Conv_36(t_441)
296
t_443 = self.n_Conv_37(t_441)
297
t_444 = F.relu(t_443)
298
t_444_padded = F.pad(t_444, [0, 1, 0, 1], value=0)
299
t_445 = self.n_Conv_38(t_444_padded)
300
t_446 = F.relu(t_445)
301
t_447 = self.n_Conv_39(t_446)
302
t_448 = torch.add(t_447, t_442)
303
t_449 = F.relu(t_448)
304
t_450 = self.n_Conv_40(t_449)
305
t_451 = F.relu(t_450)
306
t_451_padded = F.pad(t_451, [1, 1, 1, 1], value=0)
307
t_452 = self.n_Conv_41(t_451_padded)
308
t_453 = F.relu(t_452)
309
t_454 = self.n_Conv_42(t_453)
310
t_455 = torch.add(t_454, t_449)
311
t_456 = F.relu(t_455)
312
t_457 = self.n_Conv_43(t_456)
313
t_458 = F.relu(t_457)
314
t_458_padded = F.pad(t_458, [1, 1, 1, 1], value=0)
315
t_459 = self.n_Conv_44(t_458_padded)
316
t_460 = F.relu(t_459)
317
t_461 = self.n_Conv_45(t_460)
318
t_462 = torch.add(t_461, t_456)
319
t_463 = F.relu(t_462)
320
t_464 = self.n_Conv_46(t_463)
321
t_465 = F.relu(t_464)
322
t_465_padded = F.pad(t_465, [1, 1, 1, 1], value=0)
323
t_466 = self.n_Conv_47(t_465_padded)
324
t_467 = F.relu(t_466)
325
t_468 = self.n_Conv_48(t_467)
326
t_469 = torch.add(t_468, t_463)
327
t_470 = F.relu(t_469)
328
t_471 = self.n_Conv_49(t_470)
329
t_472 = F.relu(t_471)
330
t_472_padded = F.pad(t_472, [1, 1, 1, 1], value=0)
331
t_473 = self.n_Conv_50(t_472_padded)
332
t_474 = F.relu(t_473)
333
t_475 = self.n_Conv_51(t_474)
334
t_476 = torch.add(t_475, t_470)
335
t_477 = F.relu(t_476)
336
t_478 = self.n_Conv_52(t_477)
337
t_479 = F.relu(t_478)
338
t_479_padded = F.pad(t_479, [1, 1, 1, 1], value=0)
339
t_480 = self.n_Conv_53(t_479_padded)
340
t_481 = F.relu(t_480)
341
t_482 = self.n_Conv_54(t_481)
342
t_483 = torch.add(t_482, t_477)
343
t_484 = F.relu(t_483)
344
t_485 = self.n_Conv_55(t_484)
345
t_486 = F.relu(t_485)
346
t_486_padded = F.pad(t_486, [1, 1, 1, 1], value=0)
347
t_487 = self.n_Conv_56(t_486_padded)
348
t_488 = F.relu(t_487)
349
t_489 = self.n_Conv_57(t_488)
350
t_490 = torch.add(t_489, t_484)
351
t_491 = F.relu(t_490)
352
t_492 = self.n_Conv_58(t_491)
353
t_493 = F.relu(t_492)
354
t_493_padded = F.pad(t_493, [1, 1, 1, 1], value=0)
355
t_494 = self.n_Conv_59(t_493_padded)
356
t_495 = F.relu(t_494)
357
t_496 = self.n_Conv_60(t_495)
358
t_497 = torch.add(t_496, t_491)
359
t_498 = F.relu(t_497)
360
t_499 = self.n_Conv_61(t_498)
361
t_500 = F.relu(t_499)
362
t_500_padded = F.pad(t_500, [1, 1, 1, 1], value=0)
363
t_501 = self.n_Conv_62(t_500_padded)
364
t_502 = F.relu(t_501)
365
t_503 = self.n_Conv_63(t_502)
366
t_504 = torch.add(t_503, t_498)
367
t_505 = F.relu(t_504)
368
t_506 = self.n_Conv_64(t_505)
369
t_507 = F.relu(t_506)
370
t_507_padded = F.pad(t_507, [1, 1, 1, 1], value=0)
371
t_508 = self.n_Conv_65(t_507_padded)
372
t_509 = F.relu(t_508)
373
t_510 = self.n_Conv_66(t_509)
374
t_511 = torch.add(t_510, t_505)
375
t_512 = F.relu(t_511)
376
t_513 = self.n_Conv_67(t_512)
377
t_514 = F.relu(t_513)
378
t_514_padded = F.pad(t_514, [1, 1, 1, 1], value=0)
379
t_515 = self.n_Conv_68(t_514_padded)
380
t_516 = F.relu(t_515)
381
t_517 = self.n_Conv_69(t_516)
382
t_518 = torch.add(t_517, t_512)
383
t_519 = F.relu(t_518)
384
t_520 = self.n_Conv_70(t_519)
385
t_521 = F.relu(t_520)
386
t_521_padded = F.pad(t_521, [1, 1, 1, 1], value=0)
387
t_522 = self.n_Conv_71(t_521_padded)
388
t_523 = F.relu(t_522)
389
t_524 = self.n_Conv_72(t_523)
390
t_525 = torch.add(t_524, t_519)
391
t_526 = F.relu(t_525)
392
t_527 = self.n_Conv_73(t_526)
393
t_528 = F.relu(t_527)
394
t_528_padded = F.pad(t_528, [1, 1, 1, 1], value=0)
395
t_529 = self.n_Conv_74(t_528_padded)
396
t_530 = F.relu(t_529)
397
t_531 = self.n_Conv_75(t_530)
398
t_532 = torch.add(t_531, t_526)
399
t_533 = F.relu(t_532)
400
t_534 = self.n_Conv_76(t_533)
401
t_535 = F.relu(t_534)
402
t_535_padded = F.pad(t_535, [1, 1, 1, 1], value=0)
403
t_536 = self.n_Conv_77(t_535_padded)
404
t_537 = F.relu(t_536)
405
t_538 = self.n_Conv_78(t_537)
406
t_539 = torch.add(t_538, t_533)
407
t_540 = F.relu(t_539)
408
t_541 = self.n_Conv_79(t_540)
409
t_542 = F.relu(t_541)
410
t_542_padded = F.pad(t_542, [1, 1, 1, 1], value=0)
411
t_543 = self.n_Conv_80(t_542_padded)
412
t_544 = F.relu(t_543)
413
t_545 = self.n_Conv_81(t_544)
414
t_546 = torch.add(t_545, t_540)
415
t_547 = F.relu(t_546)
416
t_548 = self.n_Conv_82(t_547)
417
t_549 = F.relu(t_548)
418
t_549_padded = F.pad(t_549, [1, 1, 1, 1], value=0)
419
t_550 = self.n_Conv_83(t_549_padded)
420
t_551 = F.relu(t_550)
421
t_552 = self.n_Conv_84(t_551)
422
t_553 = torch.add(t_552, t_547)
423
t_554 = F.relu(t_553)
424
t_555 = self.n_Conv_85(t_554)
425
t_556 = F.relu(t_555)
426
t_556_padded = F.pad(t_556, [1, 1, 1, 1], value=0)
427
t_557 = self.n_Conv_86(t_556_padded)
428
t_558 = F.relu(t_557)
429
t_559 = self.n_Conv_87(t_558)
430
t_560 = torch.add(t_559, t_554)
431
t_561 = F.relu(t_560)
432
t_562 = self.n_Conv_88(t_561)
433
t_563 = F.relu(t_562)
434
t_563_padded = F.pad(t_563, [1, 1, 1, 1], value=0)
435
t_564 = self.n_Conv_89(t_563_padded)
436
t_565 = F.relu(t_564)
437
t_566 = self.n_Conv_90(t_565)
438
t_567 = torch.add(t_566, t_561)
439
t_568 = F.relu(t_567)
440
t_569 = self.n_Conv_91(t_568)
441
t_570 = F.relu(t_569)
442
t_570_padded = F.pad(t_570, [1, 1, 1, 1], value=0)
443
t_571 = self.n_Conv_92(t_570_padded)
444
t_572 = F.relu(t_571)
445
t_573 = self.n_Conv_93(t_572)
446
t_574 = torch.add(t_573, t_568)
447
t_575 = F.relu(t_574)
448
t_576 = self.n_Conv_94(t_575)
449
t_577 = F.relu(t_576)
450
t_577_padded = F.pad(t_577, [1, 1, 1, 1], value=0)
451
t_578 = self.n_Conv_95(t_577_padded)
452
t_579 = F.relu(t_578)
453
t_580 = self.n_Conv_96(t_579)
454
t_581 = torch.add(t_580, t_575)
455
t_582 = F.relu(t_581)
456
t_583 = self.n_Conv_97(t_582)
457
t_584 = F.relu(t_583)
458
t_584_padded = F.pad(t_584, [0, 1, 0, 1], value=0)
459
t_585 = self.n_Conv_98(t_584_padded)
460
t_586 = F.relu(t_585)
461
t_587 = self.n_Conv_99(t_586)
462
t_588 = self.n_Conv_100(t_582)
463
t_589 = torch.add(t_587, t_588)
464
t_590 = F.relu(t_589)
465
t_591 = self.n_Conv_101(t_590)
466
t_592 = F.relu(t_591)
467
t_592_padded = F.pad(t_592, [1, 1, 1, 1], value=0)
468
t_593 = self.n_Conv_102(t_592_padded)
469
t_594 = F.relu(t_593)
470
t_595 = self.n_Conv_103(t_594)
471
t_596 = torch.add(t_595, t_590)
472
t_597 = F.relu(t_596)
473
t_598 = self.n_Conv_104(t_597)
474
t_599 = F.relu(t_598)
475
t_599_padded = F.pad(t_599, [1, 1, 1, 1], value=0)
476
t_600 = self.n_Conv_105(t_599_padded)
477
t_601 = F.relu(t_600)
478
t_602 = self.n_Conv_106(t_601)
479
t_603 = torch.add(t_602, t_597)
480
t_604 = F.relu(t_603)
481
t_605 = self.n_Conv_107(t_604)
482
t_606 = F.relu(t_605)
483
t_606_padded = F.pad(t_606, [1, 1, 1, 1], value=0)
484
t_607 = self.n_Conv_108(t_606_padded)
485
t_608 = F.relu(t_607)
486
t_609 = self.n_Conv_109(t_608)
487
t_610 = torch.add(t_609, t_604)
488
t_611 = F.relu(t_610)
489
t_612 = self.n_Conv_110(t_611)
490
t_613 = F.relu(t_612)
491
t_613_padded = F.pad(t_613, [1, 1, 1, 1], value=0)
492
t_614 = self.n_Conv_111(t_613_padded)
493
t_615 = F.relu(t_614)
494
t_616 = self.n_Conv_112(t_615)
495
t_617 = torch.add(t_616, t_611)
496
t_618 = F.relu(t_617)
497
t_619 = self.n_Conv_113(t_618)
498
t_620 = F.relu(t_619)
499
t_620_padded = F.pad(t_620, [1, 1, 1, 1], value=0)
500
t_621 = self.n_Conv_114(t_620_padded)
501
t_622 = F.relu(t_621)
502
t_623 = self.n_Conv_115(t_622)
503
t_624 = torch.add(t_623, t_618)
504
t_625 = F.relu(t_624)
505
t_626 = self.n_Conv_116(t_625)
506
t_627 = F.relu(t_626)
507
t_627_padded = F.pad(t_627, [1, 1, 1, 1], value=0)
508
t_628 = self.n_Conv_117(t_627_padded)
509
t_629 = F.relu(t_628)
510
t_630 = self.n_Conv_118(t_629)
511
t_631 = torch.add(t_630, t_625)
512
t_632 = F.relu(t_631)
513
t_633 = self.n_Conv_119(t_632)
514
t_634 = F.relu(t_633)
515
t_634_padded = F.pad(t_634, [1, 1, 1, 1], value=0)
516
t_635 = self.n_Conv_120(t_634_padded)
517
t_636 = F.relu(t_635)
518
t_637 = self.n_Conv_121(t_636)
519
t_638 = torch.add(t_637, t_632)
520
t_639 = F.relu(t_638)
521
t_640 = self.n_Conv_122(t_639)
522
t_641 = F.relu(t_640)
523
t_641_padded = F.pad(t_641, [1, 1, 1, 1], value=0)
524
t_642 = self.n_Conv_123(t_641_padded)
525
t_643 = F.relu(t_642)
526
t_644 = self.n_Conv_124(t_643)
527
t_645 = torch.add(t_644, t_639)
528
t_646 = F.relu(t_645)
529
t_647 = self.n_Conv_125(t_646)
530
t_648 = F.relu(t_647)
531
t_648_padded = F.pad(t_648, [1, 1, 1, 1], value=0)
532
t_649 = self.n_Conv_126(t_648_padded)
533
t_650 = F.relu(t_649)
534
t_651 = self.n_Conv_127(t_650)
535
t_652 = torch.add(t_651, t_646)
536
t_653 = F.relu(t_652)
537
t_654 = self.n_Conv_128(t_653)
538
t_655 = F.relu(t_654)
539
t_655_padded = F.pad(t_655, [1, 1, 1, 1], value=0)
540
t_656 = self.n_Conv_129(t_655_padded)
541
t_657 = F.relu(t_656)
542
t_658 = self.n_Conv_130(t_657)
543
t_659 = torch.add(t_658, t_653)
544
t_660 = F.relu(t_659)
545
t_661 = self.n_Conv_131(t_660)
546
t_662 = F.relu(t_661)
547
t_662_padded = F.pad(t_662, [1, 1, 1, 1], value=0)
548
t_663 = self.n_Conv_132(t_662_padded)
549
t_664 = F.relu(t_663)
550
t_665 = self.n_Conv_133(t_664)
551
t_666 = torch.add(t_665, t_660)
552
t_667 = F.relu(t_666)
553
t_668 = self.n_Conv_134(t_667)
554
t_669 = F.relu(t_668)
555
t_669_padded = F.pad(t_669, [1, 1, 1, 1], value=0)
556
t_670 = self.n_Conv_135(t_669_padded)
557
t_671 = F.relu(t_670)
558
t_672 = self.n_Conv_136(t_671)
559
t_673 = torch.add(t_672, t_667)
560
t_674 = F.relu(t_673)
561
t_675 = self.n_Conv_137(t_674)
562
t_676 = F.relu(t_675)
563
t_676_padded = F.pad(t_676, [1, 1, 1, 1], value=0)
564
t_677 = self.n_Conv_138(t_676_padded)
565
t_678 = F.relu(t_677)
566
t_679 = self.n_Conv_139(t_678)
567
t_680 = torch.add(t_679, t_674)
568
t_681 = F.relu(t_680)
569
t_682 = self.n_Conv_140(t_681)
570
t_683 = F.relu(t_682)
571
t_683_padded = F.pad(t_683, [1, 1, 1, 1], value=0)
572
t_684 = self.n_Conv_141(t_683_padded)
573
t_685 = F.relu(t_684)
574
t_686 = self.n_Conv_142(t_685)
575
t_687 = torch.add(t_686, t_681)
576
t_688 = F.relu(t_687)
577
t_689 = self.n_Conv_143(t_688)
578
t_690 = F.relu(t_689)
579
t_690_padded = F.pad(t_690, [1, 1, 1, 1], value=0)
580
t_691 = self.n_Conv_144(t_690_padded)
581
t_692 = F.relu(t_691)
582
t_693 = self.n_Conv_145(t_692)
583
t_694 = torch.add(t_693, t_688)
584
t_695 = F.relu(t_694)
585
t_696 = self.n_Conv_146(t_695)
586
t_697 = F.relu(t_696)
587
t_697_padded = F.pad(t_697, [1, 1, 1, 1], value=0)
588
t_698 = self.n_Conv_147(t_697_padded)
589
t_699 = F.relu(t_698)
590
t_700 = self.n_Conv_148(t_699)
591
t_701 = torch.add(t_700, t_695)
592
t_702 = F.relu(t_701)
593
t_703 = self.n_Conv_149(t_702)
594
t_704 = F.relu(t_703)
595
t_704_padded = F.pad(t_704, [1, 1, 1, 1], value=0)
596
t_705 = self.n_Conv_150(t_704_padded)
597
t_706 = F.relu(t_705)
598
t_707 = self.n_Conv_151(t_706)
599
t_708 = torch.add(t_707, t_702)
600
t_709 = F.relu(t_708)
601
t_710 = self.n_Conv_152(t_709)
602
t_711 = F.relu(t_710)
603
t_711_padded = F.pad(t_711, [1, 1, 1, 1], value=0)
604
t_712 = self.n_Conv_153(t_711_padded)
605
t_713 = F.relu(t_712)
606
t_714 = self.n_Conv_154(t_713)
607
t_715 = torch.add(t_714, t_709)
608
t_716 = F.relu(t_715)
609
t_717 = self.n_Conv_155(t_716)
610
t_718 = F.relu(t_717)
611
t_718_padded = F.pad(t_718, [1, 1, 1, 1], value=0)
612
t_719 = self.n_Conv_156(t_718_padded)
613
t_720 = F.relu(t_719)
614
t_721 = self.n_Conv_157(t_720)
615
t_722 = torch.add(t_721, t_716)
616
t_723 = F.relu(t_722)
617
t_724 = self.n_Conv_158(t_723)
618
t_725 = self.n_Conv_159(t_723)
619
t_726 = F.relu(t_725)
620
t_726_padded = F.pad(t_726, [0, 1, 0, 1], value=0)
621
t_727 = self.n_Conv_160(t_726_padded)
622
t_728 = F.relu(t_727)
623
t_729 = self.n_Conv_161(t_728)
624
t_730 = torch.add(t_729, t_724)
625
t_731 = F.relu(t_730)
626
t_732 = self.n_Conv_162(t_731)
627
t_733 = F.relu(t_732)
628
t_733_padded = F.pad(t_733, [1, 1, 1, 1], value=0)
629
t_734 = self.n_Conv_163(t_733_padded)
630
t_735 = F.relu(t_734)
631
t_736 = self.n_Conv_164(t_735)
632
t_737 = torch.add(t_736, t_731)
633
t_738 = F.relu(t_737)
634
t_739 = self.n_Conv_165(t_738)
635
t_740 = F.relu(t_739)
636
t_740_padded = F.pad(t_740, [1, 1, 1, 1], value=0)
637
t_741 = self.n_Conv_166(t_740_padded)
638
t_742 = F.relu(t_741)
639
t_743 = self.n_Conv_167(t_742)
640
t_744 = torch.add(t_743, t_738)
641
t_745 = F.relu(t_744)
642
t_746 = self.n_Conv_168(t_745)
643
t_747 = self.n_Conv_169(t_745)
644
t_748 = F.relu(t_747)
645
t_748_padded = F.pad(t_748, [0, 1, 0, 1], value=0)
646
t_749 = self.n_Conv_170(t_748_padded)
647
t_750 = F.relu(t_749)
648
t_751 = self.n_Conv_171(t_750)
649
t_752 = torch.add(t_751, t_746)
650
t_753 = F.relu(t_752)
651
t_754 = self.n_Conv_172(t_753)
652
t_755 = F.relu(t_754)
653
t_755_padded = F.pad(t_755, [1, 1, 1, 1], value=0)
654
t_756 = self.n_Conv_173(t_755_padded)
655
t_757 = F.relu(t_756)
656
t_758 = self.n_Conv_174(t_757)
657
t_759 = torch.add(t_758, t_753)
658
t_760 = F.relu(t_759)
659
t_761 = self.n_Conv_175(t_760)
660
t_762 = F.relu(t_761)
661
t_762_padded = F.pad(t_762, [1, 1, 1, 1], value=0)
662
t_763 = self.n_Conv_176(t_762_padded)
663
t_764 = F.relu(t_763)
664
t_765 = self.n_Conv_177(t_764)
665
t_766 = torch.add(t_765, t_760)
666
t_767 = F.relu(t_766)
667
t_768 = self.n_Conv_178(t_767)
668
t_769 = F.avg_pool2d(t_768, kernel_size=t_768.shape[-2:])
669
t_770 = torch.squeeze(t_769, 3)
670
t_770 = torch.squeeze(t_770, 2)
671
t_771 = torch.sigmoid(t_770)
672
return t_771
673
674
def load_state_dict(self, state_dict, **kwargs):
675
self.tags = state_dict.get('tags', [])
676
677
super(DeepDanbooruModel, self).load_state_dict({k: v for k, v in state_dict.items() if k != 'tags'})
678
679
680