Path: blob/master/modules/extras.py
3055 views
import os1import re2import shutil3import json456import torch7import tqdm89from modules import shared, images, sd_models, sd_vae, sd_models_config, errors10from modules.ui_common import plaintext_to_html11import gradio as gr12import safetensors.torch131415def run_pnginfo(image):16if image is None:17return '', '', ''1819geninfo, items = images.read_info_from_image(image)20items = {**{'parameters': geninfo}, **items}2122info = ''23for key, text in items.items():24info += f"""25<div>26<p><b>{plaintext_to_html(str(key))}</b></p>27<p>{plaintext_to_html(str(text))}</p>28</div>29""".strip()+"\n"3031if len(info) == 0:32message = "Nothing found in the image."33info = f"<div><p>{message}<p></div>"3435return '', geninfo, info363738def create_config(ckpt_result, config_source, a, b, c):39def config(x):40res = sd_models_config.find_checkpoint_config_near_filename(x) if x else None41return res if res != shared.sd_default_config else None4243if config_source == 0:44cfg = config(a) or config(b) or config(c)45elif config_source == 1:46cfg = config(b)47elif config_source == 2:48cfg = config(c)49else:50cfg = None5152if cfg is None:53return5455filename, _ = os.path.splitext(ckpt_result)56checkpoint_filename = filename + ".yaml"5758print("Copying config:")59print(" from:", cfg)60print(" to:", checkpoint_filename)61shutil.copyfile(cfg, checkpoint_filename)626364checkpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"]656667def to_half(tensor, enable):68if enable and tensor.dtype == torch.float:69return tensor.half()7071return tensor727374def read_metadata(primary_model_name, secondary_model_name, tertiary_model_name):75metadata = {}7677for checkpoint_name in [primary_model_name, secondary_model_name, tertiary_model_name]:78checkpoint_info = sd_models.checkpoints_list.get(checkpoint_name, None)79if checkpoint_info is None:80continue8182metadata.update(checkpoint_info.metadata)8384return json.dumps(metadata, indent=4, ensure_ascii=False)858687def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata, add_merge_recipe, copy_metadata_fields, metadata_json):88shared.state.begin(job="model-merge")8990def fail(message):91shared.state.textinfo = message92shared.state.end()93return [*[gr.update() for _ in range(4)], message]9495def weighted_sum(theta0, theta1, alpha):96return ((1 - alpha) * theta0) + (alpha * theta1)9798def get_difference(theta1, theta2):99return theta1 - theta2100101def add_difference(theta0, theta1_2_diff, alpha):102return theta0 + (alpha * theta1_2_diff)103104def filename_weighted_sum():105a = primary_model_info.model_name106b = secondary_model_info.model_name107Ma = round(1 - multiplier, 2)108Mb = round(multiplier, 2)109110return f"{Ma}({a}) + {Mb}({b})"111112def filename_add_difference():113a = primary_model_info.model_name114b = secondary_model_info.model_name115c = tertiary_model_info.model_name116M = round(multiplier, 2)117118return f"{a} + {M}({b} - {c})"119120def filename_nothing():121return primary_model_info.model_name122123theta_funcs = {124"Weighted sum": (filename_weighted_sum, None, weighted_sum),125"Add difference": (filename_add_difference, get_difference, add_difference),126"No interpolation": (filename_nothing, None, None),127}128filename_generator, theta_func1, theta_func2 = theta_funcs[interp_method]129shared.state.job_count = (1 if theta_func1 else 0) + (1 if theta_func2 else 0)130131if not primary_model_name:132return fail("Failed: Merging requires a primary model.")133134primary_model_info = sd_models.checkpoints_list[primary_model_name]135136if theta_func2 and not secondary_model_name:137return fail("Failed: Merging requires a secondary model.")138139secondary_model_info = sd_models.checkpoints_list[secondary_model_name] if theta_func2 else None140141if theta_func1 and not tertiary_model_name:142return fail(f"Failed: Interpolation method ({interp_method}) requires a tertiary model.")143144tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None145146result_is_inpainting_model = False147result_is_instruct_pix2pix_model = False148149if theta_func2:150shared.state.textinfo = "Loading B"151print(f"Loading {secondary_model_info.filename}...")152theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')153else:154theta_1 = None155156if theta_func1:157shared.state.textinfo = "Loading C"158print(f"Loading {tertiary_model_info.filename}...")159theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')160161shared.state.textinfo = 'Merging B and C'162shared.state.sampling_steps = len(theta_1.keys())163for key in tqdm.tqdm(theta_1.keys()):164if key in checkpoint_dict_skip_on_merge:165continue166167if 'model' in key:168if key in theta_2:169t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))170theta_1[key] = theta_func1(theta_1[key], t2)171else:172theta_1[key] = torch.zeros_like(theta_1[key])173174shared.state.sampling_step += 1175del theta_2176177shared.state.nextjob()178179shared.state.textinfo = f"Loading {primary_model_info.filename}..."180print(f"Loading {primary_model_info.filename}...")181theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')182183print("Merging...")184shared.state.textinfo = 'Merging A and B'185shared.state.sampling_steps = len(theta_0.keys())186for key in tqdm.tqdm(theta_0.keys()):187if theta_1 and 'model' in key and key in theta_1:188189if key in checkpoint_dict_skip_on_merge:190continue191192a = theta_0[key]193b = theta_1[key]194195# this enables merging an inpainting model (A) with another one (B);196# where normal model would have 4 channels, for latenst space, inpainting model would197# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9198if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:199if a.shape[1] == 4 and b.shape[1] == 9:200raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")201if a.shape[1] == 4 and b.shape[1] == 8:202raise RuntimeError("When merging instruct-pix2pix model with a normal one, A must be the instruct-pix2pix model.")203204if a.shape[1] == 8 and b.shape[1] == 4:#If we have an Instruct-Pix2Pix model...205theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)#Merge only the vectors the models have in common. Otherwise we get an error due to dimension mismatch.206result_is_instruct_pix2pix_model = True207else:208assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"209theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)210result_is_inpainting_model = True211else:212theta_0[key] = theta_func2(a, b, multiplier)213214theta_0[key] = to_half(theta_0[key], save_as_half)215216shared.state.sampling_step += 1217218del theta_1219220bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None)221if bake_in_vae_filename is not None:222print(f"Baking in VAE from {bake_in_vae_filename}")223shared.state.textinfo = 'Baking in VAE'224vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu')225226for key in vae_dict.keys():227theta_0_key = 'first_stage_model.' + key228if theta_0_key in theta_0:229theta_0[theta_0_key] = to_half(vae_dict[key], save_as_half)230231del vae_dict232233if save_as_half and not theta_func2:234for key in theta_0.keys():235theta_0[key] = to_half(theta_0[key], save_as_half)236237if discard_weights:238regex = re.compile(discard_weights)239for key in list(theta_0):240if re.search(regex, key):241theta_0.pop(key, None)242243ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path244245filename = filename_generator() if custom_name == '' else custom_name246filename += ".inpainting" if result_is_inpainting_model else ""247filename += ".instruct-pix2pix" if result_is_instruct_pix2pix_model else ""248filename += "." + checkpoint_format249250output_modelname = os.path.join(ckpt_dir, filename)251252shared.state.nextjob()253shared.state.textinfo = "Saving"254print(f"Saving to {output_modelname}...")255256metadata = {}257258if save_metadata and copy_metadata_fields:259if primary_model_info:260metadata.update(primary_model_info.metadata)261if secondary_model_info:262metadata.update(secondary_model_info.metadata)263if tertiary_model_info:264metadata.update(tertiary_model_info.metadata)265266if save_metadata:267try:268metadata.update(json.loads(metadata_json))269except Exception as e:270errors.display(e, "readin metadata from json")271272metadata["format"] = "pt"273274if save_metadata and add_merge_recipe:275merge_recipe = {276"type": "webui", # indicate this model was merged with webui's built-in merger277"primary_model_hash": primary_model_info.sha256,278"secondary_model_hash": secondary_model_info.sha256 if secondary_model_info else None,279"tertiary_model_hash": tertiary_model_info.sha256 if tertiary_model_info else None,280"interp_method": interp_method,281"multiplier": multiplier,282"save_as_half": save_as_half,283"custom_name": custom_name,284"config_source": config_source,285"bake_in_vae": bake_in_vae,286"discard_weights": discard_weights,287"is_inpainting": result_is_inpainting_model,288"is_instruct_pix2pix": result_is_instruct_pix2pix_model289}290291sd_merge_models = {}292293def add_model_metadata(checkpoint_info):294checkpoint_info.calculate_shorthash()295sd_merge_models[checkpoint_info.sha256] = {296"name": checkpoint_info.name,297"legacy_hash": checkpoint_info.hash,298"sd_merge_recipe": checkpoint_info.metadata.get("sd_merge_recipe", None)299}300301sd_merge_models.update(checkpoint_info.metadata.get("sd_merge_models", {}))302303add_model_metadata(primary_model_info)304if secondary_model_info:305add_model_metadata(secondary_model_info)306if tertiary_model_info:307add_model_metadata(tertiary_model_info)308309metadata["sd_merge_recipe"] = json.dumps(merge_recipe)310metadata["sd_merge_models"] = json.dumps(sd_merge_models)311312_, extension = os.path.splitext(output_modelname)313if extension.lower() == ".safetensors":314safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata if len(metadata)>0 else None)315else:316torch.save(theta_0, output_modelname)317318sd_models.list_models()319created_model = next((ckpt for ckpt in sd_models.checkpoints_list.values() if ckpt.name == filename), None)320if created_model:321created_model.calculate_shorthash()322323create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info)324325print(f"Checkpoint saved to {output_modelname}.")326shared.state.textinfo = "Checkpoint saved"327shared.state.end()328329return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], "Checkpoint saved to " + output_modelname]330331332