Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
automatic1111
GitHub Repository: automatic1111/stable-diffusion-webui
Path: blob/master/modules/face_restoration_utils.py
3058 views
1
from __future__ import annotations
2
3
import logging
4
import os
5
from functools import cached_property
6
from typing import TYPE_CHECKING, Callable
7
8
import cv2
9
import numpy as np
10
import torch
11
12
from modules import devices, errors, face_restoration, shared
13
14
if TYPE_CHECKING:
15
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
16
17
logger = logging.getLogger(__name__)
18
19
20
def bgr_image_to_rgb_tensor(img: np.ndarray) -> torch.Tensor:
21
"""Convert a BGR NumPy image in [0..1] range to a PyTorch RGB float32 tensor."""
22
assert img.shape[2] == 3, "image must be RGB"
23
if img.dtype == "float64":
24
img = img.astype("float32")
25
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
26
return torch.from_numpy(img.transpose(2, 0, 1)).float()
27
28
29
def rgb_tensor_to_bgr_image(tensor: torch.Tensor, *, min_max=(0.0, 1.0)) -> np.ndarray:
30
"""
31
Convert a PyTorch RGB tensor in range `min_max` to a BGR NumPy image in [0..1] range.
32
"""
33
tensor = tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
34
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])
35
assert tensor.dim() == 3, "tensor must be RGB"
36
img_np = tensor.numpy().transpose(1, 2, 0)
37
if img_np.shape[2] == 1: # gray image, no RGB/BGR required
38
return np.squeeze(img_np, axis=2)
39
return cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB)
40
41
42
def create_face_helper(device) -> FaceRestoreHelper:
43
from facexlib.detection import retinaface
44
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
45
if hasattr(retinaface, 'device'):
46
retinaface.device = device
47
return FaceRestoreHelper(
48
upscale_factor=1,
49
face_size=512,
50
crop_ratio=(1, 1),
51
det_model='retinaface_resnet50',
52
save_ext='png',
53
use_parse=True,
54
device=device,
55
)
56
57
58
def restore_with_face_helper(
59
np_image: np.ndarray,
60
face_helper: FaceRestoreHelper,
61
restore_face: Callable[[torch.Tensor], torch.Tensor],
62
) -> np.ndarray:
63
"""
64
Find faces in the image using face_helper, restore them using restore_face, and paste them back into the image.
65
66
`restore_face` should take a cropped face image and return a restored face image.
67
"""
68
from torchvision.transforms.functional import normalize
69
np_image = np_image[:, :, ::-1]
70
original_resolution = np_image.shape[0:2]
71
72
try:
73
logger.debug("Detecting faces...")
74
face_helper.clean_all()
75
face_helper.read_image(np_image)
76
face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
77
face_helper.align_warp_face()
78
logger.debug("Found %d faces, restoring", len(face_helper.cropped_faces))
79
for cropped_face in face_helper.cropped_faces:
80
cropped_face_t = bgr_image_to_rgb_tensor(cropped_face / 255.0)
81
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
82
cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)
83
84
try:
85
with torch.no_grad():
86
cropped_face_t = restore_face(cropped_face_t)
87
devices.torch_gc()
88
except Exception:
89
errors.report('Failed face-restoration inference', exc_info=True)
90
91
restored_face = rgb_tensor_to_bgr_image(cropped_face_t, min_max=(-1, 1))
92
restored_face = (restored_face * 255.0).astype('uint8')
93
face_helper.add_restored_face(restored_face)
94
95
logger.debug("Merging restored faces into image")
96
face_helper.get_inverse_affine(None)
97
img = face_helper.paste_faces_to_input_image()
98
img = img[:, :, ::-1]
99
if original_resolution != img.shape[0:2]:
100
img = cv2.resize(
101
img,
102
(0, 0),
103
fx=original_resolution[1] / img.shape[1],
104
fy=original_resolution[0] / img.shape[0],
105
interpolation=cv2.INTER_LINEAR,
106
)
107
logger.debug("Face restoration complete")
108
finally:
109
face_helper.clean_all()
110
return img
111
112
113
class CommonFaceRestoration(face_restoration.FaceRestoration):
114
net: torch.Module | None
115
model_url: str
116
model_download_name: str
117
118
def __init__(self, model_path: str):
119
super().__init__()
120
self.net = None
121
self.model_path = model_path
122
os.makedirs(model_path, exist_ok=True)
123
124
@cached_property
125
def face_helper(self) -> FaceRestoreHelper:
126
return create_face_helper(self.get_device())
127
128
def send_model_to(self, device):
129
if self.net:
130
logger.debug("Sending %s to %s", self.net, device)
131
self.net.to(device)
132
if self.face_helper:
133
logger.debug("Sending face helper to %s", device)
134
self.face_helper.face_det.to(device)
135
self.face_helper.face_parse.to(device)
136
137
def get_device(self):
138
raise NotImplementedError("get_device must be implemented by subclasses")
139
140
def load_net(self) -> torch.Module:
141
raise NotImplementedError("load_net must be implemented by subclasses")
142
143
def restore_with_helper(
144
self,
145
np_image: np.ndarray,
146
restore_face: Callable[[torch.Tensor], torch.Tensor],
147
) -> np.ndarray:
148
try:
149
if self.net is None:
150
self.net = self.load_net()
151
except Exception:
152
logger.warning("Unable to load face-restoration model", exc_info=True)
153
return np_image
154
155
try:
156
self.send_model_to(self.get_device())
157
return restore_with_face_helper(np_image, self.face_helper, restore_face)
158
finally:
159
if shared.opts.face_restoration_unload:
160
self.send_model_to(devices.cpu)
161
162
163
def patch_facexlib(dirname: str) -> None:
164
import facexlib.detection
165
import facexlib.parsing
166
167
det_facex_load_file_from_url = facexlib.detection.load_file_from_url
168
par_facex_load_file_from_url = facexlib.parsing.load_file_from_url
169
170
def update_kwargs(kwargs):
171
return dict(kwargs, save_dir=dirname, model_dir=None)
172
173
def facex_load_file_from_url(**kwargs):
174
return det_facex_load_file_from_url(**update_kwargs(kwargs))
175
176
def facex_load_file_from_url2(**kwargs):
177
return par_facex_load_file_from_url(**update_kwargs(kwargs))
178
179
facexlib.detection.load_file_from_url = facex_load_file_from_url
180
facexlib.parsing.load_file_from_url = facex_load_file_from_url2
181
182