Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
automatic1111
GitHub Repository: automatic1111/stable-diffusion-webui
Path: blob/master/modules/hypernetworks/hypernetwork.py
3068 views
1
import datetime
2
import glob
3
import html
4
import os
5
import inspect
6
from contextlib import closing
7
8
import modules.textual_inversion.dataset
9
import torch
10
import tqdm
11
from einops import rearrange, repeat
12
from ldm.util import default
13
from modules import devices, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
14
from modules.textual_inversion import textual_inversion, saving_settings
15
from modules.textual_inversion.learn_schedule import LearnRateScheduler
16
from torch import einsum
17
from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
18
19
from collections import deque
20
from statistics import stdev, mean
21
22
23
optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}
24
25
class HypernetworkModule(torch.nn.Module):
26
activation_dict = {
27
"linear": torch.nn.Identity,
28
"relu": torch.nn.ReLU,
29
"leakyrelu": torch.nn.LeakyReLU,
30
"elu": torch.nn.ELU,
31
"swish": torch.nn.Hardswish,
32
"tanh": torch.nn.Tanh,
33
"sigmoid": torch.nn.Sigmoid,
34
}
35
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
36
37
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
38
add_layer_norm=False, activate_output=False, dropout_structure=None):
39
super().__init__()
40
41
self.multiplier = 1.0
42
43
assert layer_structure is not None, "layer_structure must not be None"
44
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
45
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
46
47
linears = []
48
for i in range(len(layer_structure) - 1):
49
50
# Add a fully-connected layer
51
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
52
53
# Add an activation func except last layer
54
if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
55
pass
56
elif activation_func in self.activation_dict:
57
linears.append(self.activation_dict[activation_func]())
58
else:
59
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
60
61
# Add layer normalization
62
if add_layer_norm:
63
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
64
65
# Everything should be now parsed into dropout structure, and applied here.
66
# Since we only have dropouts after layers, dropout structure should start with 0 and end with 0.
67
if dropout_structure is not None and dropout_structure[i+1] > 0:
68
assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!"
69
linears.append(torch.nn.Dropout(p=dropout_structure[i+1]))
70
# Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0].
71
72
self.linear = torch.nn.Sequential(*linears)
73
74
if state_dict is not None:
75
self.fix_old_state_dict(state_dict)
76
self.load_state_dict(state_dict)
77
else:
78
for layer in self.linear:
79
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
80
w, b = layer.weight.data, layer.bias.data
81
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
82
normal_(w, mean=0.0, std=0.01)
83
normal_(b, mean=0.0, std=0)
84
elif weight_init == 'XavierUniform':
85
xavier_uniform_(w)
86
zeros_(b)
87
elif weight_init == 'XavierNormal':
88
xavier_normal_(w)
89
zeros_(b)
90
elif weight_init == 'KaimingUniform':
91
kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
92
zeros_(b)
93
elif weight_init == 'KaimingNormal':
94
kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
95
zeros_(b)
96
else:
97
raise KeyError(f"Key {weight_init} is not defined as initialization!")
98
devices.torch_npu_set_device()
99
self.to(devices.device)
100
101
def fix_old_state_dict(self, state_dict):
102
changes = {
103
'linear1.bias': 'linear.0.bias',
104
'linear1.weight': 'linear.0.weight',
105
'linear2.bias': 'linear.1.bias',
106
'linear2.weight': 'linear.1.weight',
107
}
108
109
for fr, to in changes.items():
110
x = state_dict.get(fr, None)
111
if x is None:
112
continue
113
114
del state_dict[fr]
115
state_dict[to] = x
116
117
def forward(self, x):
118
return x + self.linear(x) * (self.multiplier if not self.training else 1)
119
120
def trainables(self):
121
layer_structure = []
122
for layer in self.linear:
123
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
124
layer_structure += [layer.weight, layer.bias]
125
return layer_structure
126
127
128
#param layer_structure : sequence used for length, use_dropout : controlling boolean, last_layer_dropout : for compatibility check.
129
def parse_dropout_structure(layer_structure, use_dropout, last_layer_dropout):
130
if layer_structure is None:
131
layer_structure = [1, 2, 1]
132
if not use_dropout:
133
return [0] * len(layer_structure)
134
dropout_values = [0]
135
dropout_values.extend([0.3] * (len(layer_structure) - 3))
136
if last_layer_dropout:
137
dropout_values.append(0.3)
138
else:
139
dropout_values.append(0)
140
dropout_values.append(0)
141
return dropout_values
142
143
144
class Hypernetwork:
145
filename = None
146
name = None
147
148
def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
149
self.filename = None
150
self.name = name
151
self.layers = {}
152
self.step = 0
153
self.sd_checkpoint = None
154
self.sd_checkpoint_name = None
155
self.layer_structure = layer_structure
156
self.activation_func = activation_func
157
self.weight_init = weight_init
158
self.add_layer_norm = add_layer_norm
159
self.use_dropout = use_dropout
160
self.activate_output = activate_output
161
self.last_layer_dropout = kwargs.get('last_layer_dropout', True)
162
self.dropout_structure = kwargs.get('dropout_structure', None)
163
if self.dropout_structure is None:
164
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
165
self.optimizer_name = None
166
self.optimizer_state_dict = None
167
self.optional_info = None
168
169
for size in enable_sizes or []:
170
self.layers[size] = (
171
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
172
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
173
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
174
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
175
)
176
self.eval()
177
178
def weights(self):
179
res = []
180
for layers in self.layers.values():
181
for layer in layers:
182
res += layer.parameters()
183
return res
184
185
def train(self, mode=True):
186
for layers in self.layers.values():
187
for layer in layers:
188
layer.train(mode=mode)
189
for param in layer.parameters():
190
param.requires_grad = mode
191
192
def to(self, device):
193
for layers in self.layers.values():
194
for layer in layers:
195
layer.to(device)
196
197
return self
198
199
def set_multiplier(self, multiplier):
200
for layers in self.layers.values():
201
for layer in layers:
202
layer.multiplier = multiplier
203
204
return self
205
206
def eval(self):
207
for layers in self.layers.values():
208
for layer in layers:
209
layer.eval()
210
for param in layer.parameters():
211
param.requires_grad = False
212
213
def save(self, filename):
214
state_dict = {}
215
optimizer_saved_dict = {}
216
217
for k, v in self.layers.items():
218
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
219
220
state_dict['step'] = self.step
221
state_dict['name'] = self.name
222
state_dict['layer_structure'] = self.layer_structure
223
state_dict['activation_func'] = self.activation_func
224
state_dict['is_layer_norm'] = self.add_layer_norm
225
state_dict['weight_initialization'] = self.weight_init
226
state_dict['sd_checkpoint'] = self.sd_checkpoint
227
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
228
state_dict['activate_output'] = self.activate_output
229
state_dict['use_dropout'] = self.use_dropout
230
state_dict['dropout_structure'] = self.dropout_structure
231
state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout
232
state_dict['optional_info'] = self.optional_info if self.optional_info else None
233
234
if self.optimizer_name is not None:
235
optimizer_saved_dict['optimizer_name'] = self.optimizer_name
236
237
torch.save(state_dict, filename)
238
if shared.opts.save_optimizer_state and self.optimizer_state_dict:
239
optimizer_saved_dict['hash'] = self.shorthash()
240
optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
241
torch.save(optimizer_saved_dict, filename + '.optim')
242
243
def load(self, filename):
244
self.filename = filename
245
if self.name is None:
246
self.name = os.path.splitext(os.path.basename(filename))[0]
247
248
state_dict = torch.load(filename, map_location='cpu')
249
250
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
251
self.optional_info = state_dict.get('optional_info', None)
252
self.activation_func = state_dict.get('activation_func', None)
253
self.weight_init = state_dict.get('weight_initialization', 'Normal')
254
self.add_layer_norm = state_dict.get('is_layer_norm', False)
255
self.dropout_structure = state_dict.get('dropout_structure', None)
256
self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False)
257
self.activate_output = state_dict.get('activate_output', True)
258
self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
259
# Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0.
260
if self.dropout_structure is None:
261
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
262
263
if shared.opts.print_hypernet_extra:
264
if self.optional_info is not None:
265
print(f" INFO:\n {self.optional_info}\n")
266
267
print(f" Layer structure: {self.layer_structure}")
268
print(f" Activation function: {self.activation_func}")
269
print(f" Weight initialization: {self.weight_init}")
270
print(f" Layer norm: {self.add_layer_norm}")
271
print(f" Dropout usage: {self.use_dropout}" )
272
print(f" Activate last layer: {self.activate_output}")
273
print(f" Dropout structure: {self.dropout_structure}")
274
275
optimizer_saved_dict = torch.load(self.filename + '.optim', map_location='cpu') if os.path.exists(self.filename + '.optim') else {}
276
277
if self.shorthash() == optimizer_saved_dict.get('hash', None):
278
self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
279
else:
280
self.optimizer_state_dict = None
281
if self.optimizer_state_dict:
282
self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
283
if shared.opts.print_hypernet_extra:
284
print("Loaded existing optimizer from checkpoint")
285
print(f"Optimizer name is {self.optimizer_name}")
286
else:
287
self.optimizer_name = "AdamW"
288
if shared.opts.print_hypernet_extra:
289
print("No saved optimizer exists in checkpoint")
290
291
for size, sd in state_dict.items():
292
if type(size) == int:
293
self.layers[size] = (
294
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
295
self.add_layer_norm, self.activate_output, self.dropout_structure),
296
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
297
self.add_layer_norm, self.activate_output, self.dropout_structure),
298
)
299
300
self.name = state_dict.get('name', self.name)
301
self.step = state_dict.get('step', 0)
302
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
303
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
304
self.eval()
305
306
def shorthash(self):
307
sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}')
308
309
return sha256[0:10] if sha256 else None
310
311
312
def list_hypernetworks(path):
313
res = {}
314
for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True), key=str.lower):
315
name = os.path.splitext(os.path.basename(filename))[0]
316
# Prevent a hypothetical "None.pt" from being listed.
317
if name != "None":
318
res[name] = filename
319
return res
320
321
322
def load_hypernetwork(name):
323
path = shared.hypernetworks.get(name, None)
324
325
if path is None:
326
return None
327
328
try:
329
hypernetwork = Hypernetwork()
330
hypernetwork.load(path)
331
return hypernetwork
332
except Exception:
333
errors.report(f"Error loading hypernetwork {path}", exc_info=True)
334
return None
335
336
337
def load_hypernetworks(names, multipliers=None):
338
already_loaded = {}
339
340
for hypernetwork in shared.loaded_hypernetworks:
341
if hypernetwork.name in names:
342
already_loaded[hypernetwork.name] = hypernetwork
343
344
shared.loaded_hypernetworks.clear()
345
346
for i, name in enumerate(names):
347
hypernetwork = already_loaded.get(name, None)
348
if hypernetwork is None:
349
hypernetwork = load_hypernetwork(name)
350
351
if hypernetwork is None:
352
continue
353
354
hypernetwork.set_multiplier(multipliers[i] if multipliers else 1.0)
355
shared.loaded_hypernetworks.append(hypernetwork)
356
357
358
def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):
359
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None)
360
361
if hypernetwork_layers is None:
362
return context_k, context_v
363
364
if layer is not None:
365
layer.hyper_k = hypernetwork_layers[0]
366
layer.hyper_v = hypernetwork_layers[1]
367
368
context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k)))
369
context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v)))
370
return context_k, context_v
371
372
373
def apply_hypernetworks(hypernetworks, context, layer=None):
374
context_k = context
375
context_v = context
376
for hypernetwork in hypernetworks:
377
context_k, context_v = apply_single_hypernetwork(hypernetwork, context_k, context_v, layer)
378
379
return context_k, context_v
380
381
382
def attention_CrossAttention_forward(self, x, context=None, mask=None, **kwargs):
383
h = self.heads
384
385
q = self.to_q(x)
386
context = default(context, x)
387
388
context_k, context_v = apply_hypernetworks(shared.loaded_hypernetworks, context, self)
389
k = self.to_k(context_k)
390
v = self.to_v(context_v)
391
392
q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))
393
394
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
395
396
if mask is not None:
397
mask = rearrange(mask, 'b ... -> b (...)')
398
max_neg_value = -torch.finfo(sim.dtype).max
399
mask = repeat(mask, 'b j -> (b h) () j', h=h)
400
sim.masked_fill_(~mask, max_neg_value)
401
402
# attention, what we cannot get enough of
403
attn = sim.softmax(dim=-1)
404
405
out = einsum('b i j, b j d -> b i d', attn, v)
406
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
407
return self.to_out(out)
408
409
410
def stack_conds(conds):
411
if len(conds) == 1:
412
return torch.stack(conds)
413
414
# same as in reconstruct_multicond_batch
415
token_count = max([x.shape[0] for x in conds])
416
for i in range(len(conds)):
417
if conds[i].shape[0] != token_count:
418
last_vector = conds[i][-1:]
419
last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1])
420
conds[i] = torch.vstack([conds[i], last_vector_repeated])
421
422
return torch.stack(conds)
423
424
425
def statistics(data):
426
if len(data) < 2:
427
std = 0
428
else:
429
std = stdev(data)
430
total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})"
431
recent_data = data[-32:]
432
if len(recent_data) < 2:
433
std = 0
434
else:
435
std = stdev(recent_data)
436
recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})"
437
return total_information, recent_information
438
439
440
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
441
# Remove illegal characters from name.
442
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
443
assert name, "Name cannot be empty!"
444
445
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
446
if not overwrite_old:
447
assert not os.path.exists(fn), f"file {fn} already exists"
448
449
if type(layer_structure) == str:
450
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
451
452
if use_dropout and dropout_structure and type(dropout_structure) == str:
453
dropout_structure = [float(x.strip()) for x in dropout_structure.split(",")]
454
else:
455
dropout_structure = [0] * len(layer_structure)
456
457
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
458
name=name,
459
enable_sizes=[int(x) for x in enable_sizes],
460
layer_structure=layer_structure,
461
activation_func=activation_func,
462
weight_init=weight_init,
463
add_layer_norm=add_layer_norm,
464
use_dropout=use_dropout,
465
dropout_structure=dropout_structure
466
)
467
hypernet.save(fn)
468
469
shared.reload_hypernetworks()
470
471
472
def train_hypernetwork(id_task, hypernetwork_name: str, learn_rate: float, batch_size: int, gradient_step: int, data_root: str, log_directory: str, training_width: int, training_height: int, varsize: bool, steps: int, clip_grad_mode: str, clip_grad_value: float, shuffle_tags: bool, tag_drop_out: bool, latent_sampling_method: str, use_weight: bool, create_image_every: int, save_hypernetwork_every: int, template_filename: str, preview_from_txt2img: bool, preview_prompt: str, preview_negative_prompt: str, preview_steps: int, preview_sampler_name: str, preview_cfg_scale: float, preview_seed: int, preview_width: int, preview_height: int):
473
from modules import images, processing
474
475
save_hypernetwork_every = save_hypernetwork_every or 0
476
create_image_every = create_image_every or 0
477
template_file = textual_inversion.textual_inversion_templates.get(template_filename, None)
478
textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
479
template_file = template_file.path
480
481
path = shared.hypernetworks.get(hypernetwork_name, None)
482
hypernetwork = Hypernetwork()
483
hypernetwork.load(path)
484
shared.loaded_hypernetworks = [hypernetwork]
485
486
shared.state.job = "train-hypernetwork"
487
shared.state.textinfo = "Initializing hypernetwork training..."
488
shared.state.job_count = steps
489
490
hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
491
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
492
493
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
494
unload = shared.opts.unload_models_when_training
495
496
if save_hypernetwork_every > 0:
497
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
498
os.makedirs(hypernetwork_dir, exist_ok=True)
499
else:
500
hypernetwork_dir = None
501
502
if create_image_every > 0:
503
images_dir = os.path.join(log_directory, "images")
504
os.makedirs(images_dir, exist_ok=True)
505
else:
506
images_dir = None
507
508
checkpoint = sd_models.select_checkpoint()
509
510
initial_step = hypernetwork.step or 0
511
if initial_step >= steps:
512
shared.state.textinfo = "Model has already been trained beyond specified max steps"
513
return hypernetwork, filename
514
515
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
516
517
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None
518
if clip_grad:
519
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
520
521
if shared.opts.training_enable_tensorboard:
522
tensorboard_writer = textual_inversion.tensorboard_setup(log_directory)
523
524
# dataset loading may take a while, so input validations and early returns should be done before this
525
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
526
527
pin_memory = shared.opts.pin_memory
528
529
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)
530
531
if shared.opts.save_training_settings_to_txt:
532
saved_params = dict(
533
model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds),
534
**{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]}
535
)
536
saving_settings.save_settings_to_file(log_directory, {**saved_params, **locals()})
537
538
latent_sampling_method = ds.latent_sampling_method
539
540
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
541
542
old_parallel_processing_allowed = shared.parallel_processing_allowed
543
544
if unload:
545
shared.parallel_processing_allowed = False
546
shared.sd_model.cond_stage_model.to(devices.cpu)
547
shared.sd_model.first_stage_model.to(devices.cpu)
548
549
weights = hypernetwork.weights()
550
hypernetwork.train()
551
552
# Here we use optimizer from saved HN, or we can specify as UI option.
553
if hypernetwork.optimizer_name in optimizer_dict:
554
optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)
555
optimizer_name = hypernetwork.optimizer_name
556
else:
557
print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")
558
optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
559
optimizer_name = 'AdamW'
560
561
if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.
562
try:
563
optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
564
except RuntimeError as e:
565
print("Cannot resume from saved optimizer!")
566
print(e)
567
568
scaler = torch.cuda.amp.GradScaler()
569
570
batch_size = ds.batch_size
571
gradient_step = ds.gradient_step
572
# n steps = batch_size * gradient_step * n image processed
573
steps_per_epoch = len(ds) // batch_size // gradient_step
574
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
575
loss_step = 0
576
_loss_step = 0 #internal
577
# size = len(ds.indexes)
578
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
579
loss_logging = deque(maxlen=len(ds) * 3) # this should be configurable parameter, this is 3 * epoch(dataset size)
580
# losses = torch.zeros((size,))
581
# previous_mean_losses = [0]
582
# previous_mean_loss = 0
583
# print("Mean loss of {} elements".format(size))
584
585
steps_without_grad = 0
586
587
last_saved_file = "<none>"
588
last_saved_image = "<none>"
589
forced_filename = "<none>"
590
591
pbar = tqdm.tqdm(total=steps - initial_step)
592
try:
593
sd_hijack_checkpoint.add()
594
595
for _ in range((steps-initial_step) * gradient_step):
596
if scheduler.finished:
597
break
598
if shared.state.interrupted:
599
break
600
for j, batch in enumerate(dl):
601
# works as a drop_last=True for gradient accumulation
602
if j == max_steps_per_epoch:
603
break
604
scheduler.apply(optimizer, hypernetwork.step)
605
if scheduler.finished:
606
break
607
if shared.state.interrupted:
608
break
609
610
if clip_grad:
611
clip_grad_sched.step(hypernetwork.step)
612
613
with devices.autocast():
614
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
615
if use_weight:
616
w = batch.weight.to(devices.device, non_blocking=pin_memory)
617
if tag_drop_out != 0 or shuffle_tags:
618
shared.sd_model.cond_stage_model.to(devices.device)
619
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
620
shared.sd_model.cond_stage_model.to(devices.cpu)
621
else:
622
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
623
if use_weight:
624
loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step
625
del w
626
else:
627
loss = shared.sd_model.forward(x, c)[0] / gradient_step
628
del x
629
del c
630
631
_loss_step += loss.item()
632
scaler.scale(loss).backward()
633
634
# go back until we reach gradient accumulation steps
635
if (j + 1) % gradient_step != 0:
636
continue
637
loss_logging.append(_loss_step)
638
if clip_grad:
639
clip_grad(weights, clip_grad_sched.learn_rate)
640
641
scaler.step(optimizer)
642
scaler.update()
643
hypernetwork.step += 1
644
pbar.update()
645
optimizer.zero_grad(set_to_none=True)
646
loss_step = _loss_step
647
_loss_step = 0
648
649
steps_done = hypernetwork.step + 1
650
651
epoch_num = hypernetwork.step // steps_per_epoch
652
epoch_step = hypernetwork.step % steps_per_epoch
653
654
description = f"Training hypernetwork [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}"
655
pbar.set_description(description)
656
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
657
# Before saving, change name to match current checkpoint.
658
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
659
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
660
hypernetwork.optimizer_name = optimizer_name
661
if shared.opts.save_optimizer_state:
662
hypernetwork.optimizer_state_dict = optimizer.state_dict()
663
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
664
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
665
666
667
668
if shared.opts.training_enable_tensorboard:
669
epoch_num = hypernetwork.step // len(ds)
670
epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
671
mean_loss = sum(loss_logging) / len(loss_logging)
672
textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
673
674
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
675
"loss": f"{loss_step:.7f}",
676
"learn_rate": scheduler.learn_rate
677
})
678
679
if images_dir is not None and steps_done % create_image_every == 0:
680
forced_filename = f'{hypernetwork_name}-{steps_done}'
681
last_saved_image = os.path.join(images_dir, forced_filename)
682
hypernetwork.eval()
683
rng_state = torch.get_rng_state()
684
cuda_rng_state = None
685
if torch.cuda.is_available():
686
cuda_rng_state = torch.cuda.get_rng_state_all()
687
shared.sd_model.cond_stage_model.to(devices.device)
688
shared.sd_model.first_stage_model.to(devices.device)
689
690
p = processing.StableDiffusionProcessingTxt2Img(
691
sd_model=shared.sd_model,
692
do_not_save_grid=True,
693
do_not_save_samples=True,
694
)
695
696
p.disable_extra_networks = True
697
698
if preview_from_txt2img:
699
p.prompt = preview_prompt
700
p.negative_prompt = preview_negative_prompt
701
p.steps = preview_steps
702
p.sampler_name = sd_samplers.samplers_map[preview_sampler_name.lower()]
703
p.cfg_scale = preview_cfg_scale
704
p.seed = preview_seed
705
p.width = preview_width
706
p.height = preview_height
707
else:
708
p.prompt = batch.cond_text[0]
709
p.steps = 20
710
p.width = training_width
711
p.height = training_height
712
713
preview_text = p.prompt
714
715
with closing(p):
716
processed = processing.process_images(p)
717
image = processed.images[0] if len(processed.images) > 0 else None
718
719
if unload:
720
shared.sd_model.cond_stage_model.to(devices.cpu)
721
shared.sd_model.first_stage_model.to(devices.cpu)
722
torch.set_rng_state(rng_state)
723
if torch.cuda.is_available():
724
torch.cuda.set_rng_state_all(cuda_rng_state)
725
hypernetwork.train()
726
if image is not None:
727
shared.state.assign_current_image(image)
728
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
729
textual_inversion.tensorboard_add_image(tensorboard_writer,
730
f"Validation at epoch {epoch_num}", image,
731
hypernetwork.step)
732
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
733
last_saved_image += f", prompt: {preview_text}"
734
735
shared.state.job_no = hypernetwork.step
736
737
shared.state.textinfo = f"""
738
<p>
739
Loss: {loss_step:.7f}<br/>
740
Step: {steps_done}<br/>
741
Last prompt: {html.escape(batch.cond_text[0])}<br/>
742
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
743
Last saved image: {html.escape(last_saved_image)}<br/>
744
</p>
745
"""
746
except Exception:
747
errors.report("Exception in training hypernetwork", exc_info=True)
748
finally:
749
pbar.leave = False
750
pbar.close()
751
hypernetwork.eval()
752
sd_hijack_checkpoint.remove()
753
754
755
756
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
757
hypernetwork.optimizer_name = optimizer_name
758
if shared.opts.save_optimizer_state:
759
hypernetwork.optimizer_state_dict = optimizer.state_dict()
760
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
761
762
del optimizer
763
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
764
shared.sd_model.cond_stage_model.to(devices.device)
765
shared.sd_model.first_stage_model.to(devices.device)
766
shared.parallel_processing_allowed = old_parallel_processing_allowed
767
768
return hypernetwork, filename
769
770
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
771
old_hypernetwork_name = hypernetwork.name
772
old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
773
old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
774
try:
775
hypernetwork.sd_checkpoint = checkpoint.shorthash
776
hypernetwork.sd_checkpoint_name = checkpoint.model_name
777
hypernetwork.name = hypernetwork_name
778
hypernetwork.save(filename)
779
except:
780
hypernetwork.sd_checkpoint = old_sd_checkpoint
781
hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name
782
hypernetwork.name = old_hypernetwork_name
783
raise
784
785