Path: blob/master/modules/hypernetworks/hypernetwork.py
3068 views
import datetime1import glob2import html3import os4import inspect5from contextlib import closing67import modules.textual_inversion.dataset8import torch9import tqdm10from einops import rearrange, repeat11from ldm.util import default12from modules import devices, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors13from modules.textual_inversion import textual_inversion, saving_settings14from modules.textual_inversion.learn_schedule import LearnRateScheduler15from torch import einsum16from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_1718from collections import deque19from statistics import stdev, mean202122optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}2324class HypernetworkModule(torch.nn.Module):25activation_dict = {26"linear": torch.nn.Identity,27"relu": torch.nn.ReLU,28"leakyrelu": torch.nn.LeakyReLU,29"elu": torch.nn.ELU,30"swish": torch.nn.Hardswish,31"tanh": torch.nn.Tanh,32"sigmoid": torch.nn.Sigmoid,33}34activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})3536def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',37add_layer_norm=False, activate_output=False, dropout_structure=None):38super().__init__()3940self.multiplier = 1.04142assert layer_structure is not None, "layer_structure must not be None"43assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"44assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"4546linears = []47for i in range(len(layer_structure) - 1):4849# Add a fully-connected layer50linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))5152# Add an activation func except last layer53if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):54pass55elif activation_func in self.activation_dict:56linears.append(self.activation_dict[activation_func]())57else:58raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')5960# Add layer normalization61if add_layer_norm:62linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))6364# Everything should be now parsed into dropout structure, and applied here.65# Since we only have dropouts after layers, dropout structure should start with 0 and end with 0.66if dropout_structure is not None and dropout_structure[i+1] > 0:67assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!"68linears.append(torch.nn.Dropout(p=dropout_structure[i+1]))69# Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0].7071self.linear = torch.nn.Sequential(*linears)7273if state_dict is not None:74self.fix_old_state_dict(state_dict)75self.load_state_dict(state_dict)76else:77for layer in self.linear:78if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:79w, b = layer.weight.data, layer.bias.data80if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:81normal_(w, mean=0.0, std=0.01)82normal_(b, mean=0.0, std=0)83elif weight_init == 'XavierUniform':84xavier_uniform_(w)85zeros_(b)86elif weight_init == 'XavierNormal':87xavier_normal_(w)88zeros_(b)89elif weight_init == 'KaimingUniform':90kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')91zeros_(b)92elif weight_init == 'KaimingNormal':93kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')94zeros_(b)95else:96raise KeyError(f"Key {weight_init} is not defined as initialization!")97devices.torch_npu_set_device()98self.to(devices.device)99100def fix_old_state_dict(self, state_dict):101changes = {102'linear1.bias': 'linear.0.bias',103'linear1.weight': 'linear.0.weight',104'linear2.bias': 'linear.1.bias',105'linear2.weight': 'linear.1.weight',106}107108for fr, to in changes.items():109x = state_dict.get(fr, None)110if x is None:111continue112113del state_dict[fr]114state_dict[to] = x115116def forward(self, x):117return x + self.linear(x) * (self.multiplier if not self.training else 1)118119def trainables(self):120layer_structure = []121for layer in self.linear:122if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:123layer_structure += [layer.weight, layer.bias]124return layer_structure125126127#param layer_structure : sequence used for length, use_dropout : controlling boolean, last_layer_dropout : for compatibility check.128def parse_dropout_structure(layer_structure, use_dropout, last_layer_dropout):129if layer_structure is None:130layer_structure = [1, 2, 1]131if not use_dropout:132return [0] * len(layer_structure)133dropout_values = [0]134dropout_values.extend([0.3] * (len(layer_structure) - 3))135if last_layer_dropout:136dropout_values.append(0.3)137else:138dropout_values.append(0)139dropout_values.append(0)140return dropout_values141142143class Hypernetwork:144filename = None145name = None146147def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):148self.filename = None149self.name = name150self.layers = {}151self.step = 0152self.sd_checkpoint = None153self.sd_checkpoint_name = None154self.layer_structure = layer_structure155self.activation_func = activation_func156self.weight_init = weight_init157self.add_layer_norm = add_layer_norm158self.use_dropout = use_dropout159self.activate_output = activate_output160self.last_layer_dropout = kwargs.get('last_layer_dropout', True)161self.dropout_structure = kwargs.get('dropout_structure', None)162if self.dropout_structure is None:163self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)164self.optimizer_name = None165self.optimizer_state_dict = None166self.optional_info = None167168for size in enable_sizes or []:169self.layers[size] = (170HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,171self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),172HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,173self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),174)175self.eval()176177def weights(self):178res = []179for layers in self.layers.values():180for layer in layers:181res += layer.parameters()182return res183184def train(self, mode=True):185for layers in self.layers.values():186for layer in layers:187layer.train(mode=mode)188for param in layer.parameters():189param.requires_grad = mode190191def to(self, device):192for layers in self.layers.values():193for layer in layers:194layer.to(device)195196return self197198def set_multiplier(self, multiplier):199for layers in self.layers.values():200for layer in layers:201layer.multiplier = multiplier202203return self204205def eval(self):206for layers in self.layers.values():207for layer in layers:208layer.eval()209for param in layer.parameters():210param.requires_grad = False211212def save(self, filename):213state_dict = {}214optimizer_saved_dict = {}215216for k, v in self.layers.items():217state_dict[k] = (v[0].state_dict(), v[1].state_dict())218219state_dict['step'] = self.step220state_dict['name'] = self.name221state_dict['layer_structure'] = self.layer_structure222state_dict['activation_func'] = self.activation_func223state_dict['is_layer_norm'] = self.add_layer_norm224state_dict['weight_initialization'] = self.weight_init225state_dict['sd_checkpoint'] = self.sd_checkpoint226state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name227state_dict['activate_output'] = self.activate_output228state_dict['use_dropout'] = self.use_dropout229state_dict['dropout_structure'] = self.dropout_structure230state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout231state_dict['optional_info'] = self.optional_info if self.optional_info else None232233if self.optimizer_name is not None:234optimizer_saved_dict['optimizer_name'] = self.optimizer_name235236torch.save(state_dict, filename)237if shared.opts.save_optimizer_state and self.optimizer_state_dict:238optimizer_saved_dict['hash'] = self.shorthash()239optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict240torch.save(optimizer_saved_dict, filename + '.optim')241242def load(self, filename):243self.filename = filename244if self.name is None:245self.name = os.path.splitext(os.path.basename(filename))[0]246247state_dict = torch.load(filename, map_location='cpu')248249self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])250self.optional_info = state_dict.get('optional_info', None)251self.activation_func = state_dict.get('activation_func', None)252self.weight_init = state_dict.get('weight_initialization', 'Normal')253self.add_layer_norm = state_dict.get('is_layer_norm', False)254self.dropout_structure = state_dict.get('dropout_structure', None)255self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False)256self.activate_output = state_dict.get('activate_output', True)257self.last_layer_dropout = state_dict.get('last_layer_dropout', False)258# Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0.259if self.dropout_structure is None:260self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)261262if shared.opts.print_hypernet_extra:263if self.optional_info is not None:264print(f" INFO:\n {self.optional_info}\n")265266print(f" Layer structure: {self.layer_structure}")267print(f" Activation function: {self.activation_func}")268print(f" Weight initialization: {self.weight_init}")269print(f" Layer norm: {self.add_layer_norm}")270print(f" Dropout usage: {self.use_dropout}" )271print(f" Activate last layer: {self.activate_output}")272print(f" Dropout structure: {self.dropout_structure}")273274optimizer_saved_dict = torch.load(self.filename + '.optim', map_location='cpu') if os.path.exists(self.filename + '.optim') else {}275276if self.shorthash() == optimizer_saved_dict.get('hash', None):277self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)278else:279self.optimizer_state_dict = None280if self.optimizer_state_dict:281self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')282if shared.opts.print_hypernet_extra:283print("Loaded existing optimizer from checkpoint")284print(f"Optimizer name is {self.optimizer_name}")285else:286self.optimizer_name = "AdamW"287if shared.opts.print_hypernet_extra:288print("No saved optimizer exists in checkpoint")289290for size, sd in state_dict.items():291if type(size) == int:292self.layers[size] = (293HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,294self.add_layer_norm, self.activate_output, self.dropout_structure),295HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,296self.add_layer_norm, self.activate_output, self.dropout_structure),297)298299self.name = state_dict.get('name', self.name)300self.step = state_dict.get('step', 0)301self.sd_checkpoint = state_dict.get('sd_checkpoint', None)302self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)303self.eval()304305def shorthash(self):306sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}')307308return sha256[0:10] if sha256 else None309310311def list_hypernetworks(path):312res = {}313for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True), key=str.lower):314name = os.path.splitext(os.path.basename(filename))[0]315# Prevent a hypothetical "None.pt" from being listed.316if name != "None":317res[name] = filename318return res319320321def load_hypernetwork(name):322path = shared.hypernetworks.get(name, None)323324if path is None:325return None326327try:328hypernetwork = Hypernetwork()329hypernetwork.load(path)330return hypernetwork331except Exception:332errors.report(f"Error loading hypernetwork {path}", exc_info=True)333return None334335336def load_hypernetworks(names, multipliers=None):337already_loaded = {}338339for hypernetwork in shared.loaded_hypernetworks:340if hypernetwork.name in names:341already_loaded[hypernetwork.name] = hypernetwork342343shared.loaded_hypernetworks.clear()344345for i, name in enumerate(names):346hypernetwork = already_loaded.get(name, None)347if hypernetwork is None:348hypernetwork = load_hypernetwork(name)349350if hypernetwork is None:351continue352353hypernetwork.set_multiplier(multipliers[i] if multipliers else 1.0)354shared.loaded_hypernetworks.append(hypernetwork)355356357def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):358hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None)359360if hypernetwork_layers is None:361return context_k, context_v362363if layer is not None:364layer.hyper_k = hypernetwork_layers[0]365layer.hyper_v = hypernetwork_layers[1]366367context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k)))368context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v)))369return context_k, context_v370371372def apply_hypernetworks(hypernetworks, context, layer=None):373context_k = context374context_v = context375for hypernetwork in hypernetworks:376context_k, context_v = apply_single_hypernetwork(hypernetwork, context_k, context_v, layer)377378return context_k, context_v379380381def attention_CrossAttention_forward(self, x, context=None, mask=None, **kwargs):382h = self.heads383384q = self.to_q(x)385context = default(context, x)386387context_k, context_v = apply_hypernetworks(shared.loaded_hypernetworks, context, self)388k = self.to_k(context_k)389v = self.to_v(context_v)390391q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))392393sim = einsum('b i d, b j d -> b i j', q, k) * self.scale394395if mask is not None:396mask = rearrange(mask, 'b ... -> b (...)')397max_neg_value = -torch.finfo(sim.dtype).max398mask = repeat(mask, 'b j -> (b h) () j', h=h)399sim.masked_fill_(~mask, max_neg_value)400401# attention, what we cannot get enough of402attn = sim.softmax(dim=-1)403404out = einsum('b i j, b j d -> b i d', attn, v)405out = rearrange(out, '(b h) n d -> b n (h d)', h=h)406return self.to_out(out)407408409def stack_conds(conds):410if len(conds) == 1:411return torch.stack(conds)412413# same as in reconstruct_multicond_batch414token_count = max([x.shape[0] for x in conds])415for i in range(len(conds)):416if conds[i].shape[0] != token_count:417last_vector = conds[i][-1:]418last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1])419conds[i] = torch.vstack([conds[i], last_vector_repeated])420421return torch.stack(conds)422423424def statistics(data):425if len(data) < 2:426std = 0427else:428std = stdev(data)429total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})"430recent_data = data[-32:]431if len(recent_data) < 2:432std = 0433else:434std = stdev(recent_data)435recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})"436return total_information, recent_information437438439def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):440# Remove illegal characters from name.441name = "".join( x for x in name if (x.isalnum() or x in "._- "))442assert name, "Name cannot be empty!"443444fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")445if not overwrite_old:446assert not os.path.exists(fn), f"file {fn} already exists"447448if type(layer_structure) == str:449layer_structure = [float(x.strip()) for x in layer_structure.split(",")]450451if use_dropout and dropout_structure and type(dropout_structure) == str:452dropout_structure = [float(x.strip()) for x in dropout_structure.split(",")]453else:454dropout_structure = [0] * len(layer_structure)455456hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(457name=name,458enable_sizes=[int(x) for x in enable_sizes],459layer_structure=layer_structure,460activation_func=activation_func,461weight_init=weight_init,462add_layer_norm=add_layer_norm,463use_dropout=use_dropout,464dropout_structure=dropout_structure465)466hypernet.save(fn)467468shared.reload_hypernetworks()469470471def train_hypernetwork(id_task, hypernetwork_name: str, learn_rate: float, batch_size: int, gradient_step: int, data_root: str, log_directory: str, training_width: int, training_height: int, varsize: bool, steps: int, clip_grad_mode: str, clip_grad_value: float, shuffle_tags: bool, tag_drop_out: bool, latent_sampling_method: str, use_weight: bool, create_image_every: int, save_hypernetwork_every: int, template_filename: str, preview_from_txt2img: bool, preview_prompt: str, preview_negative_prompt: str, preview_steps: int, preview_sampler_name: str, preview_cfg_scale: float, preview_seed: int, preview_width: int, preview_height: int):472from modules import images, processing473474save_hypernetwork_every = save_hypernetwork_every or 0475create_image_every = create_image_every or 0476template_file = textual_inversion.textual_inversion_templates.get(template_filename, None)477textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")478template_file = template_file.path479480path = shared.hypernetworks.get(hypernetwork_name, None)481hypernetwork = Hypernetwork()482hypernetwork.load(path)483shared.loaded_hypernetworks = [hypernetwork]484485shared.state.job = "train-hypernetwork"486shared.state.textinfo = "Initializing hypernetwork training..."487shared.state.job_count = steps488489hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]490filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')491492log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)493unload = shared.opts.unload_models_when_training494495if save_hypernetwork_every > 0:496hypernetwork_dir = os.path.join(log_directory, "hypernetworks")497os.makedirs(hypernetwork_dir, exist_ok=True)498else:499hypernetwork_dir = None500501if create_image_every > 0:502images_dir = os.path.join(log_directory, "images")503os.makedirs(images_dir, exist_ok=True)504else:505images_dir = None506507checkpoint = sd_models.select_checkpoint()508509initial_step = hypernetwork.step or 0510if initial_step >= steps:511shared.state.textinfo = "Model has already been trained beyond specified max steps"512return hypernetwork, filename513514scheduler = LearnRateScheduler(learn_rate, steps, initial_step)515516clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None517if clip_grad:518clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)519520if shared.opts.training_enable_tensorboard:521tensorboard_writer = textual_inversion.tensorboard_setup(log_directory)522523# dataset loading may take a while, so input validations and early returns should be done before this524shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."525526pin_memory = shared.opts.pin_memory527528ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)529530if shared.opts.save_training_settings_to_txt:531saved_params = dict(532model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds),533**{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]}534)535saving_settings.save_settings_to_file(log_directory, {**saved_params, **locals()})536537latent_sampling_method = ds.latent_sampling_method538539dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)540541old_parallel_processing_allowed = shared.parallel_processing_allowed542543if unload:544shared.parallel_processing_allowed = False545shared.sd_model.cond_stage_model.to(devices.cpu)546shared.sd_model.first_stage_model.to(devices.cpu)547548weights = hypernetwork.weights()549hypernetwork.train()550551# Here we use optimizer from saved HN, or we can specify as UI option.552if hypernetwork.optimizer_name in optimizer_dict:553optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)554optimizer_name = hypernetwork.optimizer_name555else:556print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")557optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)558optimizer_name = 'AdamW'559560if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.561try:562optimizer.load_state_dict(hypernetwork.optimizer_state_dict)563except RuntimeError as e:564print("Cannot resume from saved optimizer!")565print(e)566567scaler = torch.cuda.amp.GradScaler()568569batch_size = ds.batch_size570gradient_step = ds.gradient_step571# n steps = batch_size * gradient_step * n image processed572steps_per_epoch = len(ds) // batch_size // gradient_step573max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step574loss_step = 0575_loss_step = 0 #internal576# size = len(ds.indexes)577# loss_dict = defaultdict(lambda : deque(maxlen = 1024))578loss_logging = deque(maxlen=len(ds) * 3) # this should be configurable parameter, this is 3 * epoch(dataset size)579# losses = torch.zeros((size,))580# previous_mean_losses = [0]581# previous_mean_loss = 0582# print("Mean loss of {} elements".format(size))583584steps_without_grad = 0585586last_saved_file = "<none>"587last_saved_image = "<none>"588forced_filename = "<none>"589590pbar = tqdm.tqdm(total=steps - initial_step)591try:592sd_hijack_checkpoint.add()593594for _ in range((steps-initial_step) * gradient_step):595if scheduler.finished:596break597if shared.state.interrupted:598break599for j, batch in enumerate(dl):600# works as a drop_last=True for gradient accumulation601if j == max_steps_per_epoch:602break603scheduler.apply(optimizer, hypernetwork.step)604if scheduler.finished:605break606if shared.state.interrupted:607break608609if clip_grad:610clip_grad_sched.step(hypernetwork.step)611612with devices.autocast():613x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)614if use_weight:615w = batch.weight.to(devices.device, non_blocking=pin_memory)616if tag_drop_out != 0 or shuffle_tags:617shared.sd_model.cond_stage_model.to(devices.device)618c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)619shared.sd_model.cond_stage_model.to(devices.cpu)620else:621c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)622if use_weight:623loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step624del w625else:626loss = shared.sd_model.forward(x, c)[0] / gradient_step627del x628del c629630_loss_step += loss.item()631scaler.scale(loss).backward()632633# go back until we reach gradient accumulation steps634if (j + 1) % gradient_step != 0:635continue636loss_logging.append(_loss_step)637if clip_grad:638clip_grad(weights, clip_grad_sched.learn_rate)639640scaler.step(optimizer)641scaler.update()642hypernetwork.step += 1643pbar.update()644optimizer.zero_grad(set_to_none=True)645loss_step = _loss_step646_loss_step = 0647648steps_done = hypernetwork.step + 1649650epoch_num = hypernetwork.step // steps_per_epoch651epoch_step = hypernetwork.step % steps_per_epoch652653description = f"Training hypernetwork [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}"654pbar.set_description(description)655if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:656# Before saving, change name to match current checkpoint.657hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'658last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')659hypernetwork.optimizer_name = optimizer_name660if shared.opts.save_optimizer_state:661hypernetwork.optimizer_state_dict = optimizer.state_dict()662save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)663hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.664665666667if shared.opts.training_enable_tensorboard:668epoch_num = hypernetwork.step // len(ds)669epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1670mean_loss = sum(loss_logging) / len(loss_logging)671textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)672673textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {674"loss": f"{loss_step:.7f}",675"learn_rate": scheduler.learn_rate676})677678if images_dir is not None and steps_done % create_image_every == 0:679forced_filename = f'{hypernetwork_name}-{steps_done}'680last_saved_image = os.path.join(images_dir, forced_filename)681hypernetwork.eval()682rng_state = torch.get_rng_state()683cuda_rng_state = None684if torch.cuda.is_available():685cuda_rng_state = torch.cuda.get_rng_state_all()686shared.sd_model.cond_stage_model.to(devices.device)687shared.sd_model.first_stage_model.to(devices.device)688689p = processing.StableDiffusionProcessingTxt2Img(690sd_model=shared.sd_model,691do_not_save_grid=True,692do_not_save_samples=True,693)694695p.disable_extra_networks = True696697if preview_from_txt2img:698p.prompt = preview_prompt699p.negative_prompt = preview_negative_prompt700p.steps = preview_steps701p.sampler_name = sd_samplers.samplers_map[preview_sampler_name.lower()]702p.cfg_scale = preview_cfg_scale703p.seed = preview_seed704p.width = preview_width705p.height = preview_height706else:707p.prompt = batch.cond_text[0]708p.steps = 20709p.width = training_width710p.height = training_height711712preview_text = p.prompt713714with closing(p):715processed = processing.process_images(p)716image = processed.images[0] if len(processed.images) > 0 else None717718if unload:719shared.sd_model.cond_stage_model.to(devices.cpu)720shared.sd_model.first_stage_model.to(devices.cpu)721torch.set_rng_state(rng_state)722if torch.cuda.is_available():723torch.cuda.set_rng_state_all(cuda_rng_state)724hypernetwork.train()725if image is not None:726shared.state.assign_current_image(image)727if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:728textual_inversion.tensorboard_add_image(tensorboard_writer,729f"Validation at epoch {epoch_num}", image,730hypernetwork.step)731last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)732last_saved_image += f", prompt: {preview_text}"733734shared.state.job_no = hypernetwork.step735736shared.state.textinfo = f"""737<p>738Loss: {loss_step:.7f}<br/>739Step: {steps_done}<br/>740Last prompt: {html.escape(batch.cond_text[0])}<br/>741Last saved hypernetwork: {html.escape(last_saved_file)}<br/>742Last saved image: {html.escape(last_saved_image)}<br/>743</p>744"""745except Exception:746errors.report("Exception in training hypernetwork", exc_info=True)747finally:748pbar.leave = False749pbar.close()750hypernetwork.eval()751sd_hijack_checkpoint.remove()752753754755filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')756hypernetwork.optimizer_name = optimizer_name757if shared.opts.save_optimizer_state:758hypernetwork.optimizer_state_dict = optimizer.state_dict()759save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)760761del optimizer762hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.763shared.sd_model.cond_stage_model.to(devices.device)764shared.sd_model.first_stage_model.to(devices.device)765shared.parallel_processing_allowed = old_parallel_processing_allowed766767return hypernetwork, filename768769def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):770old_hypernetwork_name = hypernetwork.name771old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None772old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None773try:774hypernetwork.sd_checkpoint = checkpoint.shorthash775hypernetwork.sd_checkpoint_name = checkpoint.model_name776hypernetwork.name = hypernetwork_name777hypernetwork.save(filename)778except:779hypernetwork.sd_checkpoint = old_sd_checkpoint780hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name781hypernetwork.name = old_hypernetwork_name782raise783784785