Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
automatic1111
GitHub Repository: automatic1111/stable-diffusion-webui
Path: blob/master/modules/img2img.py
3055 views
1
import os
2
from contextlib import closing
3
from pathlib import Path
4
5
import numpy as np
6
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, UnidentifiedImageError
7
import gradio as gr
8
9
from modules import images
10
from modules.infotext_utils import create_override_settings_dict, parse_generation_parameters
11
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
12
from modules.shared import opts, state
13
from modules.sd_models import get_closet_checkpoint_match
14
import modules.shared as shared
15
import modules.processing as processing
16
from modules.ui import plaintext_to_html
17
import modules.scripts
18
19
20
def process_batch(p, input, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None):
21
output_dir = output_dir.strip()
22
processing.fix_seed(p)
23
24
if isinstance(input, str):
25
batch_images = list(shared.walk_files(input, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff")))
26
else:
27
batch_images = [os.path.abspath(x.name) for x in input]
28
29
is_inpaint_batch = False
30
if inpaint_mask_dir:
31
inpaint_masks = shared.listfiles(inpaint_mask_dir)
32
is_inpaint_batch = bool(inpaint_masks)
33
34
if is_inpaint_batch:
35
print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.")
36
37
print(f"Will process {len(batch_images)} images, creating {p.n_iter * p.batch_size} new images for each.")
38
39
state.job_count = len(batch_images) * p.n_iter
40
41
# extract "default" params to use in case getting png info fails
42
prompt = p.prompt
43
negative_prompt = p.negative_prompt
44
seed = p.seed
45
cfg_scale = p.cfg_scale
46
sampler_name = p.sampler_name
47
steps = p.steps
48
override_settings = p.override_settings
49
sd_model_checkpoint_override = get_closet_checkpoint_match(override_settings.get("sd_model_checkpoint", None))
50
batch_results = None
51
discard_further_results = False
52
for i, image in enumerate(batch_images):
53
state.job = f"{i+1} out of {len(batch_images)}"
54
if state.skipped:
55
state.skipped = False
56
57
if state.interrupted or state.stopping_generation:
58
break
59
60
try:
61
img = images.read(image)
62
except UnidentifiedImageError as e:
63
print(e)
64
continue
65
# Use the EXIF orientation of photos taken by smartphones.
66
img = ImageOps.exif_transpose(img)
67
68
if to_scale:
69
p.width = int(img.width * scale_by)
70
p.height = int(img.height * scale_by)
71
72
p.init_images = [img] * p.batch_size
73
74
image_path = Path(image)
75
if is_inpaint_batch:
76
# try to find corresponding mask for an image using simple filename matching
77
if len(inpaint_masks) == 1:
78
mask_image_path = inpaint_masks[0]
79
else:
80
# try to find corresponding mask for an image using simple filename matching
81
mask_image_dir = Path(inpaint_mask_dir)
82
masks_found = list(mask_image_dir.glob(f"{image_path.stem}.*"))
83
84
if len(masks_found) == 0:
85
print(f"Warning: mask is not found for {image_path} in {mask_image_dir}. Skipping it.")
86
continue
87
88
# it should contain only 1 matching mask
89
# otherwise user has many masks with the same name but different extensions
90
mask_image_path = masks_found[0]
91
92
mask_image = images.read(mask_image_path)
93
p.image_mask = mask_image
94
95
if use_png_info:
96
try:
97
info_img = img
98
if png_info_dir:
99
info_img_path = os.path.join(png_info_dir, os.path.basename(image))
100
info_img = images.read(info_img_path)
101
geninfo, _ = images.read_info_from_image(info_img)
102
parsed_parameters = parse_generation_parameters(geninfo)
103
parsed_parameters = {k: v for k, v in parsed_parameters.items() if k in (png_info_props or {})}
104
except Exception:
105
parsed_parameters = {}
106
107
p.prompt = prompt + (" " + parsed_parameters["Prompt"] if "Prompt" in parsed_parameters else "")
108
p.negative_prompt = negative_prompt + (" " + parsed_parameters["Negative prompt"] if "Negative prompt" in parsed_parameters else "")
109
p.seed = int(parsed_parameters.get("Seed", seed))
110
p.cfg_scale = float(parsed_parameters.get("CFG scale", cfg_scale))
111
p.sampler_name = parsed_parameters.get("Sampler", sampler_name)
112
p.steps = int(parsed_parameters.get("Steps", steps))
113
114
model_info = get_closet_checkpoint_match(parsed_parameters.get("Model hash", None))
115
if model_info is not None:
116
p.override_settings['sd_model_checkpoint'] = model_info.name
117
elif sd_model_checkpoint_override:
118
p.override_settings['sd_model_checkpoint'] = sd_model_checkpoint_override
119
else:
120
p.override_settings.pop("sd_model_checkpoint", None)
121
122
if output_dir:
123
p.outpath_samples = output_dir
124
p.override_settings['save_to_dirs'] = False
125
p.override_settings['save_images_replace_action'] = "Add number suffix"
126
if p.n_iter > 1 or p.batch_size > 1:
127
p.override_settings['samples_filename_pattern'] = f'{image_path.stem}-[generation_number]'
128
else:
129
p.override_settings['samples_filename_pattern'] = f'{image_path.stem}'
130
131
proc = modules.scripts.scripts_img2img.run(p, *args)
132
133
if proc is None:
134
p.override_settings.pop('save_images_replace_action', None)
135
proc = process_images(p)
136
137
if not discard_further_results and proc:
138
if batch_results:
139
batch_results.images.extend(proc.images)
140
batch_results.infotexts.extend(proc.infotexts)
141
else:
142
batch_results = proc
143
144
if 0 <= shared.opts.img2img_batch_show_results_limit < len(batch_results.images):
145
discard_further_results = True
146
batch_results.images = batch_results.images[:int(shared.opts.img2img_batch_show_results_limit)]
147
batch_results.infotexts = batch_results.infotexts[:int(shared.opts.img2img_batch_show_results_limit)]
148
149
return batch_results
150
151
152
def img2img(id_task: str, request: gr.Request, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, mask_blur: int, mask_alpha: float, inpainting_fill: int, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, img2img_batch_source_type: str, img2img_batch_upload: list, *args):
153
override_settings = create_override_settings_dict(override_settings_texts)
154
155
is_batch = mode == 5
156
157
if mode == 0: # img2img
158
image = init_img
159
mask = None
160
elif mode == 1: # img2img sketch
161
image = sketch
162
mask = None
163
elif mode == 2: # inpaint
164
image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
165
mask = processing.create_binary_mask(mask)
166
elif mode == 3: # inpaint sketch
167
image = inpaint_color_sketch
168
orig = inpaint_color_sketch_orig or inpaint_color_sketch
169
pred = np.any(np.array(image) != np.array(orig), axis=-1)
170
mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
171
mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
172
blur = ImageFilter.GaussianBlur(mask_blur)
173
image = Image.composite(image.filter(blur), orig, mask.filter(blur))
174
elif mode == 4: # inpaint upload mask
175
image = init_img_inpaint
176
mask = init_mask_inpaint
177
else:
178
image = None
179
mask = None
180
181
image = images.fix_image(image)
182
mask = images.fix_image(mask)
183
184
if selected_scale_tab == 1 and not is_batch:
185
assert image, "Can't scale by because no image is selected"
186
187
width = int(image.width * scale_by)
188
height = int(image.height * scale_by)
189
190
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
191
192
p = StableDiffusionProcessingImg2Img(
193
sd_model=shared.sd_model,
194
outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
195
outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids,
196
prompt=prompt,
197
negative_prompt=negative_prompt,
198
styles=prompt_styles,
199
batch_size=batch_size,
200
n_iter=n_iter,
201
cfg_scale=cfg_scale,
202
width=width,
203
height=height,
204
init_images=[image],
205
mask=mask,
206
mask_blur=mask_blur,
207
inpainting_fill=inpainting_fill,
208
resize_mode=resize_mode,
209
denoising_strength=denoising_strength,
210
image_cfg_scale=image_cfg_scale,
211
inpaint_full_res=inpaint_full_res,
212
inpaint_full_res_padding=inpaint_full_res_padding,
213
inpainting_mask_invert=inpainting_mask_invert,
214
override_settings=override_settings,
215
)
216
217
p.scripts = modules.scripts.scripts_img2img
218
p.script_args = args
219
220
p.user = request.username
221
222
if shared.opts.enable_console_prompts:
223
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
224
225
with closing(p):
226
if is_batch:
227
if img2img_batch_source_type == "upload":
228
assert isinstance(img2img_batch_upload, list) and img2img_batch_upload
229
output_dir = ""
230
inpaint_mask_dir = ""
231
png_info_dir = img2img_batch_png_info_dir if not shared.cmd_opts.hide_ui_dir_config else ""
232
processed = process_batch(p, img2img_batch_upload, output_dir, inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, use_png_info=img2img_batch_use_png_info, png_info_props=img2img_batch_png_info_props, png_info_dir=png_info_dir)
233
else: # "from dir"
234
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
235
processed = process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, use_png_info=img2img_batch_use_png_info, png_info_props=img2img_batch_png_info_props, png_info_dir=img2img_batch_png_info_dir)
236
237
if processed is None:
238
processed = Processed(p, [], p.seed, "")
239
else:
240
processed = modules.scripts.scripts_img2img.run(p, *args)
241
if processed is None:
242
processed = process_images(p)
243
244
shared.total_tqdm.clear()
245
246
generation_info_js = processed.js()
247
if opts.samples_log_stdout:
248
print(generation_info_js)
249
250
if opts.do_not_show_images:
251
processed.images = []
252
253
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments, classname="comments")
254
255