Path: blob/master/scripts/img2imgalt.py
3055 views
from collections import namedtuple12import numpy as np3from tqdm import trange45import modules.scripts as scripts6import gradio as gr78from modules import processing, shared, sd_samplers, sd_samplers_common910import torch11import k_diffusion as K1213def find_noise_for_image(p, cond, uncond, cfg_scale, steps):14x = p.init_latent1516s_in = x.new_ones([x.shape[0]])17if shared.sd_model.parameterization == "v":18dnw = K.external.CompVisVDenoiser(shared.sd_model)19skip = 120else:21dnw = K.external.CompVisDenoiser(shared.sd_model)22skip = 023sigmas = dnw.get_sigmas(steps).flip(0)2425shared.state.sampling_steps = steps2627for i in trange(1, len(sigmas)):28shared.state.sampling_step += 12930x_in = torch.cat([x] * 2)31sigma_in = torch.cat([sigmas[i] * s_in] * 2)32cond_in = torch.cat([uncond, cond])3334image_conditioning = torch.cat([p.image_conditioning] * 2)35cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}3637c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]38t = dnw.sigma_to_t(sigma_in)3940eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)41denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)4243denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale4445d = (x - denoised) / sigmas[i]46dt = sigmas[i] - sigmas[i - 1]4748x = x + d * dt4950sd_samplers_common.store_latent(x)5152# This shouldn't be necessary, but solved some VRAM issues53del x_in, sigma_in, cond_in, c_out, c_in, t,54del eps, denoised_uncond, denoised_cond, denoised, d, dt5556shared.state.nextjob()5758return x / x.std()596061Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt", "sigma_adjustment"])626364# Based on changes suggested by briansemrau in https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/73665def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):66x = p.init_latent6768s_in = x.new_ones([x.shape[0]])69if shared.sd_model.parameterization == "v":70dnw = K.external.CompVisVDenoiser(shared.sd_model)71skip = 172else:73dnw = K.external.CompVisDenoiser(shared.sd_model)74skip = 075sigmas = dnw.get_sigmas(steps).flip(0)7677shared.state.sampling_steps = steps7879for i in trange(1, len(sigmas)):80shared.state.sampling_step += 18182x_in = torch.cat([x] * 2)83sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)84cond_in = torch.cat([uncond, cond])8586image_conditioning = torch.cat([p.image_conditioning] * 2)87cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}8889c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]9091if i == 1:92t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))93else:94t = dnw.sigma_to_t(sigma_in)9596eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)97denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)9899denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale100101if i == 1:102d = (x - denoised) / (2 * sigmas[i])103else:104d = (x - denoised) / sigmas[i - 1]105106dt = sigmas[i] - sigmas[i - 1]107x = x + d * dt108109sd_samplers_common.store_latent(x)110111# This shouldn't be necessary, but solved some VRAM issues112del x_in, sigma_in, cond_in, c_out, c_in, t,113del eps, denoised_uncond, denoised_cond, denoised, d, dt114115shared.state.nextjob()116117return x / sigmas[-1]118119120class Script(scripts.Script):121def __init__(self):122self.cache = None123124def title(self):125return "img2img alternative test"126127def show(self, is_img2img):128return is_img2img129130def ui(self, is_img2img):131info = gr.Markdown('''132* `CFG Scale` should be 2 or lower.133''')134135override_sampler = gr.Checkbox(label="Override `Sampling method` to Euler?(this method is built for it)", value=True, elem_id=self.elem_id("override_sampler"))136137override_prompt = gr.Checkbox(label="Override `prompt` to the same value as `original prompt`?(and `negative prompt`)", value=True, elem_id=self.elem_id("override_prompt"))138original_prompt = gr.Textbox(label="Original prompt", lines=1, elem_id=self.elem_id("original_prompt"))139original_negative_prompt = gr.Textbox(label="Original negative prompt", lines=1, elem_id=self.elem_id("original_negative_prompt"))140141override_steps = gr.Checkbox(label="Override `Sampling Steps` to the same value as `Decode steps`?", value=True, elem_id=self.elem_id("override_steps"))142st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50, elem_id=self.elem_id("st"))143144override_strength = gr.Checkbox(label="Override `Denoising strength` to 1?", value=True, elem_id=self.elem_id("override_strength"))145146cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0, elem_id=self.elem_id("cfg"))147randomness = gr.Slider(label="Randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0, elem_id=self.elem_id("randomness"))148sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False, elem_id=self.elem_id("sigma_adjustment"))149150return [151info,152override_sampler,153override_prompt, original_prompt, original_negative_prompt,154override_steps, st,155override_strength,156cfg, randomness, sigma_adjustment,157]158159def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):160# Override161if override_sampler:162p.sampler_name = "Euler"163if override_prompt:164p.prompt = original_prompt165p.negative_prompt = original_negative_prompt166if override_steps:167p.steps = st168if override_strength:169p.denoising_strength = 1.0170171def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):172lat = (p.init_latent.cpu().numpy() * 10).astype(int)173174same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \175and self.cache.original_prompt == original_prompt \176and self.cache.original_negative_prompt == original_negative_prompt \177and self.cache.sigma_adjustment == sigma_adjustment178same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100179180if same_everything:181rec_noise = self.cache.noise182else:183shared.state.job_count += 1184cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt])185uncond = p.sd_model.get_learned_conditioning(p.batch_size * [original_negative_prompt])186if sigma_adjustment:187rec_noise = find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg, st)188else:189rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)190self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)191192rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p)193194combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)195196sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)197198sigmas = sampler.model_wrap.get_sigmas(p.steps)199200noise_dt = combined_noise - (p.init_latent / sigmas[0])201202p.seed = p.seed + 1203204return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning)205206p.sample = sample_extra207208p.extra_generation_params["Decode prompt"] = original_prompt209p.extra_generation_params["Decode negative prompt"] = original_negative_prompt210p.extra_generation_params["Decode CFG scale"] = cfg211p.extra_generation_params["Decode steps"] = st212p.extra_generation_params["Randomness"] = randomness213p.extra_generation_params["Sigma Adjustment"] = sigma_adjustment214215processed = processing.process_images(p)216217return processed218219220