Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
automatic1111
GitHub Repository: automatic1111/stable-diffusion-webui
Path: blob/master/scripts/loopback.py
3055 views
1
import math
2
3
import gradio as gr
4
import modules.scripts as scripts
5
from modules import deepbooru, images, processing, shared
6
from modules.processing import Processed
7
from modules.shared import opts, state
8
9
10
class Script(scripts.Script):
11
def title(self):
12
return "Loopback"
13
14
def show(self, is_img2img):
15
return is_img2img
16
17
def ui(self, is_img2img):
18
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops"))
19
final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength"))
20
denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear")
21
append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None")
22
23
return [loops, final_denoising_strength, denoising_curve, append_interrogation]
24
25
def run(self, p, loops, final_denoising_strength, denoising_curve, append_interrogation):
26
processing.fix_seed(p)
27
batch_count = p.n_iter
28
p.extra_generation_params = {
29
"Final denoising strength": final_denoising_strength,
30
"Denoising curve": denoising_curve
31
}
32
33
p.batch_size = 1
34
p.n_iter = 1
35
36
info = None
37
initial_seed = None
38
initial_info = None
39
initial_denoising_strength = p.denoising_strength
40
41
grids = []
42
all_images = []
43
original_init_image = p.init_images
44
original_prompt = p.prompt
45
original_inpainting_fill = p.inpainting_fill
46
state.job_count = loops * batch_count
47
48
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
49
50
def calculate_denoising_strength(loop):
51
strength = initial_denoising_strength
52
53
if loops == 1:
54
return strength
55
56
progress = loop / (loops - 1)
57
if denoising_curve == "Aggressive":
58
strength = math.sin((progress) * math.pi * 0.5)
59
elif denoising_curve == "Lazy":
60
strength = 1 - math.cos((progress) * math.pi * 0.5)
61
else:
62
strength = progress
63
64
change = (final_denoising_strength - initial_denoising_strength) * strength
65
return initial_denoising_strength + change
66
67
history = []
68
69
for n in range(batch_count):
70
# Reset to original init image at the start of each batch
71
p.init_images = original_init_image
72
73
# Reset to original denoising strength
74
p.denoising_strength = initial_denoising_strength
75
76
last_image = None
77
78
for i in range(loops):
79
p.n_iter = 1
80
p.batch_size = 1
81
p.do_not_save_grid = True
82
83
if opts.img2img_color_correction:
84
p.color_corrections = initial_color_corrections
85
86
if append_interrogation != "None":
87
p.prompt = f"{original_prompt}, " if original_prompt else ""
88
if append_interrogation == "CLIP":
89
p.prompt += shared.interrogator.interrogate(p.init_images[0])
90
elif append_interrogation == "DeepBooru":
91
p.prompt += deepbooru.model.tag(p.init_images[0])
92
93
state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
94
95
processed = processing.process_images(p)
96
97
# Generation cancelled.
98
if state.interrupted or state.stopping_generation:
99
break
100
101
if initial_seed is None:
102
initial_seed = processed.seed
103
initial_info = processed.info
104
105
p.seed = processed.seed + 1
106
p.denoising_strength = calculate_denoising_strength(i + 1)
107
108
if state.skipped:
109
break
110
111
last_image = processed.images[0]
112
p.init_images = [last_image]
113
p.inpainting_fill = 1 # Set "masked content" to "original" for next loop.
114
115
if batch_count == 1:
116
history.append(last_image)
117
all_images.append(last_image)
118
119
if batch_count > 1 and not state.skipped and not state.interrupted:
120
history.append(last_image)
121
all_images.append(last_image)
122
123
p.inpainting_fill = original_inpainting_fill
124
125
if state.interrupted or state.stopping_generation:
126
break
127
128
if len(history) > 1:
129
grid = images.image_grid(history, rows=1)
130
if opts.grid_save:
131
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
132
133
if opts.return_grid:
134
grids.append(grid)
135
136
all_images = grids + all_images
137
138
processed = Processed(p, all_images, initial_seed, initial_info)
139
140
return processed
141
142