Path: blob/master/scripts/sd_upscale.py
3055 views
import math12import modules.scripts as scripts3import gradio as gr4from PIL import Image56from modules import processing, shared, images, devices7from modules.processing import Processed8from modules.shared import opts, state91011class Script(scripts.Script):12def title(self):13return "SD upscale"1415def show(self, is_img2img):16return is_img2img1718def ui(self, is_img2img):19info = gr.HTML("<p style=\"margin-bottom:0.75em\">Will upscale the image by the selected scale factor; use width and height sliders to set tile size</p>")20overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, elem_id=self.elem_id("overlap"))21scale_factor = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label='Scale Factor', value=2.0, elem_id=self.elem_id("scale_factor"))22upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index", elem_id=self.elem_id("upscaler_index"))2324return [info, overlap, upscaler_index, scale_factor]2526def run(self, p, _, overlap, upscaler_index, scale_factor):27if isinstance(upscaler_index, str):28upscaler_index = [x.name.lower() for x in shared.sd_upscalers].index(upscaler_index.lower())29processing.fix_seed(p)30upscaler = shared.sd_upscalers[upscaler_index]3132p.extra_generation_params["SD upscale overlap"] = overlap33p.extra_generation_params["SD upscale upscaler"] = upscaler.name3435initial_info = None36seed = p.seed3738init_img = p.init_images[0]39init_img = images.flatten(init_img, opts.img2img_background_color)4041if upscaler.name != "None":42img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path)43else:44img = init_img4546devices.torch_gc()4748grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=overlap)4950batch_size = p.batch_size51upscale_count = p.n_iter52p.n_iter = 153p.do_not_save_grid = True54p.do_not_save_samples = True5556work = []5758for _y, _h, row in grid.tiles:59for tiledata in row:60work.append(tiledata[2])6162batch_count = math.ceil(len(work) / batch_size)63state.job_count = batch_count * upscale_count6465print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches.")6667result_images = []68for n in range(upscale_count):69start_seed = seed + n70p.seed = start_seed7172work_results = []73for i in range(batch_count):74p.batch_size = batch_size75p.init_images = work[i * batch_size:(i + 1) * batch_size]7677state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}"78processed = processing.process_images(p)7980if initial_info is None:81initial_info = processed.info8283p.seed = processed.seed + 184work_results += processed.images8586image_index = 087for _y, _h, row in grid.tiles:88for tiledata in row:89tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))90image_index += 19192combined_image = images.combine_grid(grid)93result_images.append(combined_image)9495if opts.samples_save:96images.save_image(combined_image, p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p)9798processed = Processed(p, result_images, seed, initial_info)99100return processed101102103