Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/alpha/kernel/perf_event.c
10817 views
1
/*
2
* Hardware performance events for the Alpha.
3
*
4
* We implement HW counts on the EV67 and subsequent CPUs only.
5
*
6
* (C) 2010 Michael J. Cree
7
*
8
* Somewhat based on the Sparc code, and to a lesser extent the PowerPC and
9
* ARM code, which are copyright by their respective authors.
10
*/
11
12
#include <linux/perf_event.h>
13
#include <linux/kprobes.h>
14
#include <linux/kernel.h>
15
#include <linux/kdebug.h>
16
#include <linux/mutex.h>
17
#include <linux/init.h>
18
19
#include <asm/hwrpb.h>
20
#include <asm/atomic.h>
21
#include <asm/irq.h>
22
#include <asm/irq_regs.h>
23
#include <asm/pal.h>
24
#include <asm/wrperfmon.h>
25
#include <asm/hw_irq.h>
26
27
28
/* The maximum number of PMCs on any Alpha CPU whatsoever. */
29
#define MAX_HWEVENTS 3
30
#define PMC_NO_INDEX -1
31
32
/* For tracking PMCs and the hw events they monitor on each CPU. */
33
struct cpu_hw_events {
34
int enabled;
35
/* Number of events scheduled; also number entries valid in arrays below. */
36
int n_events;
37
/* Number events added since last hw_perf_disable(). */
38
int n_added;
39
/* Events currently scheduled. */
40
struct perf_event *event[MAX_HWEVENTS];
41
/* Event type of each scheduled event. */
42
unsigned long evtype[MAX_HWEVENTS];
43
/* Current index of each scheduled event; if not yet determined
44
* contains PMC_NO_INDEX.
45
*/
46
int current_idx[MAX_HWEVENTS];
47
/* The active PMCs' config for easy use with wrperfmon(). */
48
unsigned long config;
49
/* The active counters' indices for easy use with wrperfmon(). */
50
unsigned long idx_mask;
51
};
52
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
53
54
55
56
/*
57
* A structure to hold the description of the PMCs available on a particular
58
* type of Alpha CPU.
59
*/
60
struct alpha_pmu_t {
61
/* Mapping of the perf system hw event types to indigenous event types */
62
const int *event_map;
63
/* The number of entries in the event_map */
64
int max_events;
65
/* The number of PMCs on this Alpha */
66
int num_pmcs;
67
/*
68
* All PMC counters reside in the IBOX register PCTR. This is the
69
* LSB of the counter.
70
*/
71
int pmc_count_shift[MAX_HWEVENTS];
72
/*
73
* The mask that isolates the PMC bits when the LSB of the counter
74
* is shifted to bit 0.
75
*/
76
unsigned long pmc_count_mask[MAX_HWEVENTS];
77
/* The maximum period the PMC can count. */
78
unsigned long pmc_max_period[MAX_HWEVENTS];
79
/*
80
* The maximum value that may be written to the counter due to
81
* hardware restrictions is pmc_max_period - pmc_left.
82
*/
83
long pmc_left[3];
84
/* Subroutine for allocation of PMCs. Enforces constraints. */
85
int (*check_constraints)(struct perf_event **, unsigned long *, int);
86
};
87
88
/*
89
* The Alpha CPU PMU description currently in operation. This is set during
90
* the boot process to the specific CPU of the machine.
91
*/
92
static const struct alpha_pmu_t *alpha_pmu;
93
94
95
#define HW_OP_UNSUPPORTED -1
96
97
/*
98
* The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs
99
* follow. Since they are identical we refer to them collectively as the
100
* EV67 henceforth.
101
*/
102
103
/*
104
* EV67 PMC event types
105
*
106
* There is no one-to-one mapping of the possible hw event types to the
107
* actual codes that are used to program the PMCs hence we introduce our
108
* own hw event type identifiers.
109
*/
110
enum ev67_pmc_event_type {
111
EV67_CYCLES = 1,
112
EV67_INSTRUCTIONS,
113
EV67_BCACHEMISS,
114
EV67_MBOXREPLAY,
115
EV67_LAST_ET
116
};
117
#define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES)
118
119
120
/* Mapping of the hw event types to the perf tool interface */
121
static const int ev67_perfmon_event_map[] = {
122
[PERF_COUNT_HW_CPU_CYCLES] = EV67_CYCLES,
123
[PERF_COUNT_HW_INSTRUCTIONS] = EV67_INSTRUCTIONS,
124
[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
125
[PERF_COUNT_HW_CACHE_MISSES] = EV67_BCACHEMISS,
126
};
127
128
struct ev67_mapping_t {
129
int config;
130
int idx;
131
};
132
133
/*
134
* The mapping used for one event only - these must be in same order as enum
135
* ev67_pmc_event_type definition.
136
*/
137
static const struct ev67_mapping_t ev67_mapping[] = {
138
{EV67_PCTR_INSTR_CYCLES, 1}, /* EV67_CYCLES, */
139
{EV67_PCTR_INSTR_CYCLES, 0}, /* EV67_INSTRUCTIONS */
140
{EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */
141
{EV67_PCTR_CYCLES_MBOX, 1} /* EV67_MBOXREPLAY */
142
};
143
144
145
/*
146
* Check that a group of events can be simultaneously scheduled on to the
147
* EV67 PMU. Also allocate counter indices and config.
148
*/
149
static int ev67_check_constraints(struct perf_event **event,
150
unsigned long *evtype, int n_ev)
151
{
152
int idx0;
153
unsigned long config;
154
155
idx0 = ev67_mapping[evtype[0]-1].idx;
156
config = ev67_mapping[evtype[0]-1].config;
157
if (n_ev == 1)
158
goto success;
159
160
BUG_ON(n_ev != 2);
161
162
if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) {
163
/* MBOX replay traps must be on PMC 1 */
164
idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0;
165
/* Only cycles can accompany MBOX replay traps */
166
if (evtype[idx0] == EV67_CYCLES) {
167
config = EV67_PCTR_CYCLES_MBOX;
168
goto success;
169
}
170
}
171
172
if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) {
173
/* Bcache misses must be on PMC 1 */
174
idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0;
175
/* Only instructions can accompany Bcache misses */
176
if (evtype[idx0] == EV67_INSTRUCTIONS) {
177
config = EV67_PCTR_INSTR_BCACHEMISS;
178
goto success;
179
}
180
}
181
182
if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) {
183
/* Instructions must be on PMC 0 */
184
idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1;
185
/* By this point only cycles can accompany instructions */
186
if (evtype[idx0^1] == EV67_CYCLES) {
187
config = EV67_PCTR_INSTR_CYCLES;
188
goto success;
189
}
190
}
191
192
/* Otherwise, darn it, there is a conflict. */
193
return -1;
194
195
success:
196
event[0]->hw.idx = idx0;
197
event[0]->hw.config_base = config;
198
if (n_ev == 2) {
199
event[1]->hw.idx = idx0 ^ 1;
200
event[1]->hw.config_base = config;
201
}
202
return 0;
203
}
204
205
206
static const struct alpha_pmu_t ev67_pmu = {
207
.event_map = ev67_perfmon_event_map,
208
.max_events = ARRAY_SIZE(ev67_perfmon_event_map),
209
.num_pmcs = 2,
210
.pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0},
211
.pmc_count_mask = {EV67_PCTR_0_COUNT_MASK, EV67_PCTR_1_COUNT_MASK, 0},
212
.pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0},
213
.pmc_left = {16, 4, 0},
214
.check_constraints = ev67_check_constraints
215
};
216
217
218
219
/*
220
* Helper routines to ensure that we read/write only the correct PMC bits
221
* when calling the wrperfmon PALcall.
222
*/
223
static inline void alpha_write_pmc(int idx, unsigned long val)
224
{
225
val &= alpha_pmu->pmc_count_mask[idx];
226
val <<= alpha_pmu->pmc_count_shift[idx];
227
val |= (1<<idx);
228
wrperfmon(PERFMON_CMD_WRITE, val);
229
}
230
231
static inline unsigned long alpha_read_pmc(int idx)
232
{
233
unsigned long val;
234
235
val = wrperfmon(PERFMON_CMD_READ, 0);
236
val >>= alpha_pmu->pmc_count_shift[idx];
237
val &= alpha_pmu->pmc_count_mask[idx];
238
return val;
239
}
240
241
/* Set a new period to sample over */
242
static int alpha_perf_event_set_period(struct perf_event *event,
243
struct hw_perf_event *hwc, int idx)
244
{
245
long left = local64_read(&hwc->period_left);
246
long period = hwc->sample_period;
247
int ret = 0;
248
249
if (unlikely(left <= -period)) {
250
left = period;
251
local64_set(&hwc->period_left, left);
252
hwc->last_period = period;
253
ret = 1;
254
}
255
256
if (unlikely(left <= 0)) {
257
left += period;
258
local64_set(&hwc->period_left, left);
259
hwc->last_period = period;
260
ret = 1;
261
}
262
263
/*
264
* Hardware restrictions require that the counters must not be
265
* written with values that are too close to the maximum period.
266
*/
267
if (unlikely(left < alpha_pmu->pmc_left[idx]))
268
left = alpha_pmu->pmc_left[idx];
269
270
if (left > (long)alpha_pmu->pmc_max_period[idx])
271
left = alpha_pmu->pmc_max_period[idx];
272
273
local64_set(&hwc->prev_count, (unsigned long)(-left));
274
275
alpha_write_pmc(idx, (unsigned long)(-left));
276
277
perf_event_update_userpage(event);
278
279
return ret;
280
}
281
282
283
/*
284
* Calculates the count (the 'delta') since the last time the PMC was read.
285
*
286
* As the PMCs' full period can easily be exceeded within the perf system
287
* sampling period we cannot use any high order bits as a guard bit in the
288
* PMCs to detect overflow as is done by other architectures. The code here
289
* calculates the delta on the basis that there is no overflow when ovf is
290
* zero. The value passed via ovf by the interrupt handler corrects for
291
* overflow.
292
*
293
* This can be racey on rare occasions -- a call to this routine can occur
294
* with an overflowed counter just before the PMI service routine is called.
295
* The check for delta negative hopefully always rectifies this situation.
296
*/
297
static unsigned long alpha_perf_event_update(struct perf_event *event,
298
struct hw_perf_event *hwc, int idx, long ovf)
299
{
300
long prev_raw_count, new_raw_count;
301
long delta;
302
303
again:
304
prev_raw_count = local64_read(&hwc->prev_count);
305
new_raw_count = alpha_read_pmc(idx);
306
307
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
308
new_raw_count) != prev_raw_count)
309
goto again;
310
311
delta = (new_raw_count - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf;
312
313
/* It is possible on very rare occasions that the PMC has overflowed
314
* but the interrupt is yet to come. Detect and fix this situation.
315
*/
316
if (unlikely(delta < 0)) {
317
delta += alpha_pmu->pmc_max_period[idx] + 1;
318
}
319
320
local64_add(delta, &event->count);
321
local64_sub(delta, &hwc->period_left);
322
323
return new_raw_count;
324
}
325
326
327
/*
328
* Collect all HW events into the array event[].
329
*/
330
static int collect_events(struct perf_event *group, int max_count,
331
struct perf_event *event[], unsigned long *evtype,
332
int *current_idx)
333
{
334
struct perf_event *pe;
335
int n = 0;
336
337
if (!is_software_event(group)) {
338
if (n >= max_count)
339
return -1;
340
event[n] = group;
341
evtype[n] = group->hw.event_base;
342
current_idx[n++] = PMC_NO_INDEX;
343
}
344
list_for_each_entry(pe, &group->sibling_list, group_entry) {
345
if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) {
346
if (n >= max_count)
347
return -1;
348
event[n] = pe;
349
evtype[n] = pe->hw.event_base;
350
current_idx[n++] = PMC_NO_INDEX;
351
}
352
}
353
return n;
354
}
355
356
357
358
/*
359
* Check that a group of events can be simultaneously scheduled on to the PMU.
360
*/
361
static int alpha_check_constraints(struct perf_event **events,
362
unsigned long *evtypes, int n_ev)
363
{
364
365
/* No HW events is possible from hw_perf_group_sched_in(). */
366
if (n_ev == 0)
367
return 0;
368
369
if (n_ev > alpha_pmu->num_pmcs)
370
return -1;
371
372
return alpha_pmu->check_constraints(events, evtypes, n_ev);
373
}
374
375
376
/*
377
* If new events have been scheduled then update cpuc with the new
378
* configuration. This may involve shifting cycle counts from one PMC to
379
* another.
380
*/
381
static void maybe_change_configuration(struct cpu_hw_events *cpuc)
382
{
383
int j;
384
385
if (cpuc->n_added == 0)
386
return;
387
388
/* Find counters that are moving to another PMC and update */
389
for (j = 0; j < cpuc->n_events; j++) {
390
struct perf_event *pe = cpuc->event[j];
391
392
if (cpuc->current_idx[j] != PMC_NO_INDEX &&
393
cpuc->current_idx[j] != pe->hw.idx) {
394
alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0);
395
cpuc->current_idx[j] = PMC_NO_INDEX;
396
}
397
}
398
399
/* Assign to counters all unassigned events. */
400
cpuc->idx_mask = 0;
401
for (j = 0; j < cpuc->n_events; j++) {
402
struct perf_event *pe = cpuc->event[j];
403
struct hw_perf_event *hwc = &pe->hw;
404
int idx = hwc->idx;
405
406
if (cpuc->current_idx[j] == PMC_NO_INDEX) {
407
alpha_perf_event_set_period(pe, hwc, idx);
408
cpuc->current_idx[j] = idx;
409
}
410
411
if (!(hwc->state & PERF_HES_STOPPED))
412
cpuc->idx_mask |= (1<<cpuc->current_idx[j]);
413
}
414
cpuc->config = cpuc->event[0]->hw.config_base;
415
}
416
417
418
419
/* Schedule perf HW event on to PMU.
420
* - this function is called from outside this module via the pmu struct
421
* returned from perf event initialisation.
422
*/
423
static int alpha_pmu_add(struct perf_event *event, int flags)
424
{
425
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
426
struct hw_perf_event *hwc = &event->hw;
427
int n0;
428
int ret;
429
unsigned long irq_flags;
430
431
/*
432
* The Sparc code has the IRQ disable first followed by the perf
433
* disable, however this can lead to an overflowed counter with the
434
* PMI disabled on rare occasions. The alpha_perf_event_update()
435
* routine should detect this situation by noting a negative delta,
436
* nevertheless we disable the PMCs first to enable a potential
437
* final PMI to occur before we disable interrupts.
438
*/
439
perf_pmu_disable(event->pmu);
440
local_irq_save(irq_flags);
441
442
/* Default to error to be returned */
443
ret = -EAGAIN;
444
445
/* Insert event on to PMU and if successful modify ret to valid return */
446
n0 = cpuc->n_events;
447
if (n0 < alpha_pmu->num_pmcs) {
448
cpuc->event[n0] = event;
449
cpuc->evtype[n0] = event->hw.event_base;
450
cpuc->current_idx[n0] = PMC_NO_INDEX;
451
452
if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) {
453
cpuc->n_events++;
454
cpuc->n_added++;
455
ret = 0;
456
}
457
}
458
459
hwc->state = PERF_HES_UPTODATE;
460
if (!(flags & PERF_EF_START))
461
hwc->state |= PERF_HES_STOPPED;
462
463
local_irq_restore(irq_flags);
464
perf_pmu_enable(event->pmu);
465
466
return ret;
467
}
468
469
470
471
/* Disable performance monitoring unit
472
* - this function is called from outside this module via the pmu struct
473
* returned from perf event initialisation.
474
*/
475
static void alpha_pmu_del(struct perf_event *event, int flags)
476
{
477
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
478
struct hw_perf_event *hwc = &event->hw;
479
unsigned long irq_flags;
480
int j;
481
482
perf_pmu_disable(event->pmu);
483
local_irq_save(irq_flags);
484
485
for (j = 0; j < cpuc->n_events; j++) {
486
if (event == cpuc->event[j]) {
487
int idx = cpuc->current_idx[j];
488
489
/* Shift remaining entries down into the existing
490
* slot.
491
*/
492
while (++j < cpuc->n_events) {
493
cpuc->event[j - 1] = cpuc->event[j];
494
cpuc->evtype[j - 1] = cpuc->evtype[j];
495
cpuc->current_idx[j - 1] =
496
cpuc->current_idx[j];
497
}
498
499
/* Absorb the final count and turn off the event. */
500
alpha_perf_event_update(event, hwc, idx, 0);
501
perf_event_update_userpage(event);
502
503
cpuc->idx_mask &= ~(1UL<<idx);
504
cpuc->n_events--;
505
break;
506
}
507
}
508
509
local_irq_restore(irq_flags);
510
perf_pmu_enable(event->pmu);
511
}
512
513
514
static void alpha_pmu_read(struct perf_event *event)
515
{
516
struct hw_perf_event *hwc = &event->hw;
517
518
alpha_perf_event_update(event, hwc, hwc->idx, 0);
519
}
520
521
522
static void alpha_pmu_stop(struct perf_event *event, int flags)
523
{
524
struct hw_perf_event *hwc = &event->hw;
525
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
526
527
if (!(hwc->state & PERF_HES_STOPPED)) {
528
cpuc->idx_mask &= ~(1UL<<hwc->idx);
529
hwc->state |= PERF_HES_STOPPED;
530
}
531
532
if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
533
alpha_perf_event_update(event, hwc, hwc->idx, 0);
534
hwc->state |= PERF_HES_UPTODATE;
535
}
536
537
if (cpuc->enabled)
538
wrperfmon(PERFMON_CMD_DISABLE, (1UL<<hwc->idx));
539
}
540
541
542
static void alpha_pmu_start(struct perf_event *event, int flags)
543
{
544
struct hw_perf_event *hwc = &event->hw;
545
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
546
547
if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED)))
548
return;
549
550
if (flags & PERF_EF_RELOAD) {
551
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
552
alpha_perf_event_set_period(event, hwc, hwc->idx);
553
}
554
555
hwc->state = 0;
556
557
cpuc->idx_mask |= 1UL<<hwc->idx;
558
if (cpuc->enabled)
559
wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx));
560
}
561
562
563
/*
564
* Check that CPU performance counters are supported.
565
* - currently support EV67 and later CPUs.
566
* - actually some later revisions of the EV6 have the same PMC model as the
567
* EV67 but we don't do suffiently deep CPU detection to detect them.
568
* Bad luck to the very few people who might have one, I guess.
569
*/
570
static int supported_cpu(void)
571
{
572
struct percpu_struct *cpu;
573
unsigned long cputype;
574
575
/* Get cpu type from HW */
576
cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset);
577
cputype = cpu->type & 0xffffffff;
578
/* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */
579
return (cputype >= EV67_CPU) && (cputype <= EV69_CPU);
580
}
581
582
583
584
static void hw_perf_event_destroy(struct perf_event *event)
585
{
586
/* Nothing to be done! */
587
return;
588
}
589
590
591
592
static int __hw_perf_event_init(struct perf_event *event)
593
{
594
struct perf_event_attr *attr = &event->attr;
595
struct hw_perf_event *hwc = &event->hw;
596
struct perf_event *evts[MAX_HWEVENTS];
597
unsigned long evtypes[MAX_HWEVENTS];
598
int idx_rubbish_bin[MAX_HWEVENTS];
599
int ev;
600
int n;
601
602
/* We only support a limited range of HARDWARE event types with one
603
* only programmable via a RAW event type.
604
*/
605
if (attr->type == PERF_TYPE_HARDWARE) {
606
if (attr->config >= alpha_pmu->max_events)
607
return -EINVAL;
608
ev = alpha_pmu->event_map[attr->config];
609
} else if (attr->type == PERF_TYPE_HW_CACHE) {
610
return -EOPNOTSUPP;
611
} else if (attr->type == PERF_TYPE_RAW) {
612
ev = attr->config & 0xff;
613
} else {
614
return -EOPNOTSUPP;
615
}
616
617
if (ev < 0) {
618
return ev;
619
}
620
621
/* The EV67 does not support mode exclusion */
622
if (attr->exclude_kernel || attr->exclude_user
623
|| attr->exclude_hv || attr->exclude_idle) {
624
return -EPERM;
625
}
626
627
/*
628
* We place the event type in event_base here and leave calculation
629
* of the codes to programme the PMU for alpha_pmu_enable() because
630
* it is only then we will know what HW events are actually
631
* scheduled on to the PMU. At that point the code to programme the
632
* PMU is put into config_base and the PMC to use is placed into
633
* idx. We initialise idx (below) to PMC_NO_INDEX to indicate that
634
* it is yet to be determined.
635
*/
636
hwc->event_base = ev;
637
638
/* Collect events in a group together suitable for calling
639
* alpha_check_constraints() to verify that the group as a whole can
640
* be scheduled on to the PMU.
641
*/
642
n = 0;
643
if (event->group_leader != event) {
644
n = collect_events(event->group_leader,
645
alpha_pmu->num_pmcs - 1,
646
evts, evtypes, idx_rubbish_bin);
647
if (n < 0)
648
return -EINVAL;
649
}
650
evtypes[n] = hwc->event_base;
651
evts[n] = event;
652
653
if (alpha_check_constraints(evts, evtypes, n + 1))
654
return -EINVAL;
655
656
/* Indicate that PMU config and idx are yet to be determined. */
657
hwc->config_base = 0;
658
hwc->idx = PMC_NO_INDEX;
659
660
event->destroy = hw_perf_event_destroy;
661
662
/*
663
* Most architectures reserve the PMU for their use at this point.
664
* As there is no existing mechanism to arbitrate usage and there
665
* appears to be no other user of the Alpha PMU we just assume
666
* that we can just use it, hence a NO-OP here.
667
*
668
* Maybe an alpha_reserve_pmu() routine should be implemented but is
669
* anything else ever going to use it?
670
*/
671
672
if (!hwc->sample_period) {
673
hwc->sample_period = alpha_pmu->pmc_max_period[0];
674
hwc->last_period = hwc->sample_period;
675
local64_set(&hwc->period_left, hwc->sample_period);
676
}
677
678
return 0;
679
}
680
681
/*
682
* Main entry point to initialise a HW performance event.
683
*/
684
static int alpha_pmu_event_init(struct perf_event *event)
685
{
686
int err;
687
688
switch (event->attr.type) {
689
case PERF_TYPE_RAW:
690
case PERF_TYPE_HARDWARE:
691
case PERF_TYPE_HW_CACHE:
692
break;
693
694
default:
695
return -ENOENT;
696
}
697
698
if (!alpha_pmu)
699
return -ENODEV;
700
701
/* Do the real initialisation work. */
702
err = __hw_perf_event_init(event);
703
704
return err;
705
}
706
707
/*
708
* Main entry point - enable HW performance counters.
709
*/
710
static void alpha_pmu_enable(struct pmu *pmu)
711
{
712
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
713
714
if (cpuc->enabled)
715
return;
716
717
cpuc->enabled = 1;
718
barrier();
719
720
if (cpuc->n_events > 0) {
721
/* Update cpuc with information from any new scheduled events. */
722
maybe_change_configuration(cpuc);
723
724
/* Start counting the desired events. */
725
wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE);
726
wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config);
727
wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
728
}
729
}
730
731
732
/*
733
* Main entry point - disable HW performance counters.
734
*/
735
736
static void alpha_pmu_disable(struct pmu *pmu)
737
{
738
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
739
740
if (!cpuc->enabled)
741
return;
742
743
cpuc->enabled = 0;
744
cpuc->n_added = 0;
745
746
wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
747
}
748
749
static struct pmu pmu = {
750
.pmu_enable = alpha_pmu_enable,
751
.pmu_disable = alpha_pmu_disable,
752
.event_init = alpha_pmu_event_init,
753
.add = alpha_pmu_add,
754
.del = alpha_pmu_del,
755
.start = alpha_pmu_start,
756
.stop = alpha_pmu_stop,
757
.read = alpha_pmu_read,
758
};
759
760
761
/*
762
* Main entry point - don't know when this is called but it
763
* obviously dumps debug info.
764
*/
765
void perf_event_print_debug(void)
766
{
767
unsigned long flags;
768
unsigned long pcr;
769
int pcr0, pcr1;
770
int cpu;
771
772
if (!supported_cpu())
773
return;
774
775
local_irq_save(flags);
776
777
cpu = smp_processor_id();
778
779
pcr = wrperfmon(PERFMON_CMD_READ, 0);
780
pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0];
781
pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1];
782
783
pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1);
784
785
local_irq_restore(flags);
786
}
787
788
789
/*
790
* Performance Monitoring Interrupt Service Routine called when a PMC
791
* overflows. The PMC that overflowed is passed in la_ptr.
792
*/
793
static void alpha_perf_event_irq_handler(unsigned long la_ptr,
794
struct pt_regs *regs)
795
{
796
struct cpu_hw_events *cpuc;
797
struct perf_sample_data data;
798
struct perf_event *event;
799
struct hw_perf_event *hwc;
800
int idx, j;
801
802
__get_cpu_var(irq_pmi_count)++;
803
cpuc = &__get_cpu_var(cpu_hw_events);
804
805
/* Completely counting through the PMC's period to trigger a new PMC
806
* overflow interrupt while in this interrupt routine is utterly
807
* disastrous! The EV6 and EV67 counters are sufficiently large to
808
* prevent this but to be really sure disable the PMCs.
809
*/
810
wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
811
812
/* la_ptr is the counter that overflowed. */
813
if (unlikely(la_ptr >= alpha_pmu->num_pmcs)) {
814
/* This should never occur! */
815
irq_err_count++;
816
pr_warning("PMI: silly index %ld\n", la_ptr);
817
wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
818
return;
819
}
820
821
idx = la_ptr;
822
823
perf_sample_data_init(&data, 0);
824
for (j = 0; j < cpuc->n_events; j++) {
825
if (cpuc->current_idx[j] == idx)
826
break;
827
}
828
829
if (unlikely(j == cpuc->n_events)) {
830
/* This can occur if the event is disabled right on a PMC overflow. */
831
wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
832
return;
833
}
834
835
event = cpuc->event[j];
836
837
if (unlikely(!event)) {
838
/* This should never occur! */
839
irq_err_count++;
840
pr_warning("PMI: No event at index %d!\n", idx);
841
wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
842
return;
843
}
844
845
hwc = &event->hw;
846
alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1);
847
data.period = event->hw.last_period;
848
849
if (alpha_perf_event_set_period(event, hwc, idx)) {
850
if (perf_event_overflow(event, 1, &data, regs)) {
851
/* Interrupts coming too quickly; "throttle" the
852
* counter, i.e., disable it for a little while.
853
*/
854
alpha_pmu_stop(event, 0);
855
}
856
}
857
wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
858
859
return;
860
}
861
862
863
864
/*
865
* Init call to initialise performance events at kernel startup.
866
*/
867
int __init init_hw_perf_events(void)
868
{
869
pr_info("Performance events: ");
870
871
if (!supported_cpu()) {
872
pr_cont("No support for your CPU.\n");
873
return 0;
874
}
875
876
pr_cont("Supported CPU type!\n");
877
878
/* Override performance counter IRQ vector */
879
880
perf_irq = alpha_perf_event_irq_handler;
881
882
/* And set up PMU specification */
883
alpha_pmu = &ev67_pmu;
884
885
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
886
887
return 0;
888
}
889
early_initcall(init_hw_perf_events);
890
891