Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/alpha/lib/ev6-clear_user.S
10817 views
1
/*
2
* arch/alpha/lib/ev6-clear_user.S
3
* 21264 version contributed by Rick Gorton <[email protected]>
4
*
5
* Zero user space, handling exceptions as we go.
6
*
7
* We have to make sure that $0 is always up-to-date and contains the
8
* right "bytes left to zero" value (and that it is updated only _after_
9
* a successful copy). There is also some rather minor exception setup
10
* stuff.
11
*
12
* NOTE! This is not directly C-callable, because the calling semantics
13
* are different:
14
*
15
* Inputs:
16
* length in $0
17
* destination address in $6
18
* exception pointer in $7
19
* return address in $28 (exceptions expect it there)
20
*
21
* Outputs:
22
* bytes left to copy in $0
23
*
24
* Clobbers:
25
* $1,$2,$3,$4,$5,$6
26
*
27
* Much of the information about 21264 scheduling/coding comes from:
28
* Compiler Writer's Guide for the Alpha 21264
29
* abbreviated as 'CWG' in other comments here
30
* ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
31
* Scheduling notation:
32
* E - either cluster
33
* U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
34
* L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
35
* Try not to change the actual algorithm if possible for consistency.
36
* Determining actual stalls (other than slotting) doesn't appear to be easy to do.
37
* From perusing the source code context where this routine is called, it is
38
* a fair assumption that significant fractions of entire pages are zeroed, so
39
* it's going to be worth the effort to hand-unroll a big loop, and use wh64.
40
* ASSUMPTION:
41
* The believed purpose of only updating $0 after a store is that a signal
42
* may come along during the execution of this chunk of code, and we don't
43
* want to leave a hole (and we also want to avoid repeating lots of work)
44
*/
45
46
/* Allow an exception for an insn; exit if we get one. */
47
#define EX(x,y...) \
48
99: x,##y; \
49
.section __ex_table,"a"; \
50
.long 99b - .; \
51
lda $31, $exception-99b($31); \
52
.previous
53
54
.set noat
55
.set noreorder
56
.align 4
57
58
.globl __do_clear_user
59
.ent __do_clear_user
60
.frame $30, 0, $28
61
.prologue 0
62
63
# Pipeline info : Slotting & Comments
64
__do_clear_user:
65
and $6, 7, $4 # .. E .. .. : find dest head misalignment
66
beq $0, $zerolength # U .. .. .. : U L U L
67
68
addq $0, $4, $1 # .. .. .. E : bias counter
69
and $1, 7, $2 # .. .. E .. : number of misaligned bytes in tail
70
# Note - we never actually use $2, so this is a moot computation
71
# and we can rewrite this later...
72
srl $1, 3, $1 # .. E .. .. : number of quadwords to clear
73
beq $4, $headalign # U .. .. .. : U L U L
74
75
/*
76
* Head is not aligned. Write (8 - $4) bytes to head of destination
77
* This means $6 is known to be misaligned
78
*/
79
EX( ldq_u $5, 0($6) ) # .. .. .. L : load dst word to mask back in
80
beq $1, $onebyte # .. .. U .. : sub-word store?
81
mskql $5, $6, $5 # .. U .. .. : take care of misaligned head
82
addq $6, 8, $6 # E .. .. .. : L U U L
83
84
EX( stq_u $5, -8($6) ) # .. .. .. L :
85
subq $1, 1, $1 # .. .. E .. :
86
addq $0, $4, $0 # .. E .. .. : bytes left -= 8 - misalignment
87
subq $0, 8, $0 # E .. .. .. : U L U L
88
89
.align 4
90
/*
91
* (The .align directive ought to be a moot point)
92
* values upon initial entry to the loop
93
* $1 is number of quadwords to clear (zero is a valid value)
94
* $2 is number of trailing bytes (0..7) ($2 never used...)
95
* $6 is known to be aligned 0mod8
96
*/
97
$headalign:
98
subq $1, 16, $4 # .. .. .. E : If < 16, we can not use the huge loop
99
and $6, 0x3f, $2 # .. .. E .. : Forward work for huge loop
100
subq $2, 0x40, $3 # .. E .. .. : bias counter (huge loop)
101
blt $4, $trailquad # U .. .. .. : U L U L
102
103
/*
104
* We know that we're going to do at least 16 quads, which means we are
105
* going to be able to use the large block clear loop at least once.
106
* Figure out how many quads we need to clear before we are 0mod64 aligned
107
* so we can use the wh64 instruction.
108
*/
109
110
nop # .. .. .. E
111
nop # .. .. E ..
112
nop # .. E .. ..
113
beq $3, $bigalign # U .. .. .. : U L U L : Aligned 0mod64
114
115
$alignmod64:
116
EX( stq_u $31, 0($6) ) # .. .. .. L
117
addq $3, 8, $3 # .. .. E ..
118
subq $0, 8, $0 # .. E .. ..
119
nop # E .. .. .. : U L U L
120
121
nop # .. .. .. E
122
subq $1, 1, $1 # .. .. E ..
123
addq $6, 8, $6 # .. E .. ..
124
blt $3, $alignmod64 # U .. .. .. : U L U L
125
126
$bigalign:
127
/*
128
* $0 is the number of bytes left
129
* $1 is the number of quads left
130
* $6 is aligned 0mod64
131
* we know that we'll be taking a minimum of one trip through
132
* CWG Section 3.7.6: do not expect a sustained store rate of > 1/cycle
133
* We are _not_ going to update $0 after every single store. That
134
* would be silly, because there will be cross-cluster dependencies
135
* no matter how the code is scheduled. By doing it in slightly
136
* staggered fashion, we can still do this loop in 5 fetches
137
* The worse case will be doing two extra quads in some future execution,
138
* in the event of an interrupted clear.
139
* Assumes the wh64 needs to be for 2 trips through the loop in the future
140
* The wh64 is issued on for the starting destination address for trip +2
141
* through the loop, and if there are less than two trips left, the target
142
* address will be for the current trip.
143
*/
144
nop # E :
145
nop # E :
146
nop # E :
147
bis $6,$6,$3 # E : U L U L : Initial wh64 address is dest
148
/* This might actually help for the current trip... */
149
150
$do_wh64:
151
wh64 ($3) # .. .. .. L1 : memory subsystem hint
152
subq $1, 16, $4 # .. .. E .. : Forward calculation - repeat the loop?
153
EX( stq_u $31, 0($6) ) # .. L .. ..
154
subq $0, 8, $0 # E .. .. .. : U L U L
155
156
addq $6, 128, $3 # E : Target address of wh64
157
EX( stq_u $31, 8($6) ) # L :
158
EX( stq_u $31, 16($6) ) # L :
159
subq $0, 16, $0 # E : U L L U
160
161
nop # E :
162
EX( stq_u $31, 24($6) ) # L :
163
EX( stq_u $31, 32($6) ) # L :
164
subq $0, 168, $5 # E : U L L U : two trips through the loop left?
165
/* 168 = 192 - 24, since we've already completed some stores */
166
167
subq $0, 16, $0 # E :
168
EX( stq_u $31, 40($6) ) # L :
169
EX( stq_u $31, 48($6) ) # L :
170
cmovlt $5, $6, $3 # E : U L L U : Latency 2, extra mapping cycle
171
172
subq $1, 8, $1 # E :
173
subq $0, 16, $0 # E :
174
EX( stq_u $31, 56($6) ) # L :
175
nop # E : U L U L
176
177
nop # E :
178
subq $0, 8, $0 # E :
179
addq $6, 64, $6 # E :
180
bge $4, $do_wh64 # U : U L U L
181
182
$trailquad:
183
# zero to 16 quadwords left to store, plus any trailing bytes
184
# $1 is the number of quadwords left to go.
185
#
186
nop # .. .. .. E
187
nop # .. .. E ..
188
nop # .. E .. ..
189
beq $1, $trailbytes # U .. .. .. : U L U L : Only 0..7 bytes to go
190
191
$onequad:
192
EX( stq_u $31, 0($6) ) # .. .. .. L
193
subq $1, 1, $1 # .. .. E ..
194
subq $0, 8, $0 # .. E .. ..
195
nop # E .. .. .. : U L U L
196
197
nop # .. .. .. E
198
nop # .. .. E ..
199
addq $6, 8, $6 # .. E .. ..
200
bgt $1, $onequad # U .. .. .. : U L U L
201
202
# We have an unknown number of bytes left to go.
203
$trailbytes:
204
nop # .. .. .. E
205
nop # .. .. E ..
206
nop # .. E .. ..
207
beq $0, $zerolength # U .. .. .. : U L U L
208
209
# $0 contains the number of bytes left to copy (0..31)
210
# so we will use $0 as the loop counter
211
# We know for a fact that $0 > 0 zero due to previous context
212
$onebyte:
213
EX( stb $31, 0($6) ) # .. .. .. L
214
subq $0, 1, $0 # .. .. E .. :
215
addq $6, 1, $6 # .. E .. .. :
216
bgt $0, $onebyte # U .. .. .. : U L U L
217
218
$zerolength:
219
$exception: # Destination for exception recovery(?)
220
nop # .. .. .. E :
221
nop # .. .. E .. :
222
nop # .. E .. .. :
223
ret $31, ($28), 1 # L0 .. .. .. : L U L U
224
.end __do_clear_user
225
226
227