Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/alpha/lib/ev6-copy_user.S
10817 views
1
/*
2
* arch/alpha/lib/ev6-copy_user.S
3
*
4
* 21264 version contributed by Rick Gorton <[email protected]>
5
*
6
* Copy to/from user space, handling exceptions as we go.. This
7
* isn't exactly pretty.
8
*
9
* This is essentially the same as "memcpy()", but with a few twists.
10
* Notably, we have to make sure that $0 is always up-to-date and
11
* contains the right "bytes left to copy" value (and that it is updated
12
* only _after_ a successful copy). There is also some rather minor
13
* exception setup stuff..
14
*
15
* NOTE! This is not directly C-callable, because the calling semantics are
16
* different:
17
*
18
* Inputs:
19
* length in $0
20
* destination address in $6
21
* source address in $7
22
* return address in $28
23
*
24
* Outputs:
25
* bytes left to copy in $0
26
*
27
* Clobbers:
28
* $1,$2,$3,$4,$5,$6,$7
29
*
30
* Much of the information about 21264 scheduling/coding comes from:
31
* Compiler Writer's Guide for the Alpha 21264
32
* abbreviated as 'CWG' in other comments here
33
* ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
34
* Scheduling notation:
35
* E - either cluster
36
* U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
37
* L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
38
*/
39
40
/* Allow an exception for an insn; exit if we get one. */
41
#define EXI(x,y...) \
42
99: x,##y; \
43
.section __ex_table,"a"; \
44
.long 99b - .; \
45
lda $31, $exitin-99b($31); \
46
.previous
47
48
#define EXO(x,y...) \
49
99: x,##y; \
50
.section __ex_table,"a"; \
51
.long 99b - .; \
52
lda $31, $exitout-99b($31); \
53
.previous
54
55
.set noat
56
.align 4
57
.globl __copy_user
58
.ent __copy_user
59
# Pipeline info: Slotting & Comments
60
__copy_user:
61
.prologue 0
62
subq $0, 32, $1 # .. E .. .. : Is this going to be a small copy?
63
beq $0, $zerolength # U .. .. .. : U L U L
64
65
and $6,7,$3 # .. .. .. E : is leading dest misalignment
66
ble $1, $onebyteloop # .. .. U .. : 1st branch : small amount of data
67
beq $3, $destaligned # .. U .. .. : 2nd (one cycle fetcher stall)
68
subq $3, 8, $3 # E .. .. .. : L U U L : trip counter
69
/*
70
* The fetcher stall also hides the 1 cycle cross-cluster stall for $3 (L --> U)
71
* This loop aligns the destination a byte at a time
72
* We know we have at least one trip through this loop
73
*/
74
$aligndest:
75
EXI( ldbu $1,0($7) ) # .. .. .. L : Keep loads separate from stores
76
addq $6,1,$6 # .. .. E .. : Section 3.8 in the CWG
77
addq $3,1,$3 # .. E .. .. :
78
nop # E .. .. .. : U L U L
79
80
/*
81
* the -1 is to compensate for the inc($6) done in a previous quadpack
82
* which allows us zero dependencies within either quadpack in the loop
83
*/
84
EXO( stb $1,-1($6) ) # .. .. .. L :
85
addq $7,1,$7 # .. .. E .. : Section 3.8 in the CWG
86
subq $0,1,$0 # .. E .. .. :
87
bne $3, $aligndest # U .. .. .. : U L U L
88
89
/*
90
* If we fell through into here, we have a minimum of 33 - 7 bytes
91
* If we arrived via branch, we have a minimum of 32 bytes
92
*/
93
$destaligned:
94
and $7,7,$1 # .. .. .. E : Check _current_ source alignment
95
bic $0,7,$4 # .. .. E .. : number bytes as a quadword loop
96
EXI( ldq_u $3,0($7) ) # .. L .. .. : Forward fetch for fallthrough code
97
beq $1,$quadaligned # U .. .. .. : U L U L
98
99
/*
100
* In the worst case, we've just executed an ldq_u here from 0($7)
101
* and we'll repeat it once if we take the branch
102
*/
103
104
/* Misaligned quadword loop - not unrolled. Leave it that way. */
105
$misquad:
106
EXI( ldq_u $2,8($7) ) # .. .. .. L :
107
subq $4,8,$4 # .. .. E .. :
108
extql $3,$7,$3 # .. U .. .. :
109
extqh $2,$7,$1 # U .. .. .. : U U L L
110
111
bis $3,$1,$1 # .. .. .. E :
112
EXO( stq $1,0($6) ) # .. .. L .. :
113
addq $7,8,$7 # .. E .. .. :
114
subq $0,8,$0 # E .. .. .. : U L L U
115
116
addq $6,8,$6 # .. .. .. E :
117
bis $2,$2,$3 # .. .. E .. :
118
nop # .. E .. .. :
119
bne $4,$misquad # U .. .. .. : U L U L
120
121
nop # .. .. .. E
122
nop # .. .. E ..
123
nop # .. E .. ..
124
beq $0,$zerolength # U .. .. .. : U L U L
125
126
/* We know we have at least one trip through the byte loop */
127
EXI ( ldbu $2,0($7) ) # .. .. .. L : No loads in the same quad
128
addq $6,1,$6 # .. .. E .. : as the store (Section 3.8 in CWG)
129
nop # .. E .. .. :
130
br $31, $dirtyentry # L0 .. .. .. : L U U L
131
/* Do the trailing byte loop load, then hop into the store part of the loop */
132
133
/*
134
* A minimum of (33 - 7) bytes to do a quad at a time.
135
* Based upon the usage context, it's worth the effort to unroll this loop
136
* $0 - number of bytes to be moved
137
* $4 - number of bytes to move as quadwords
138
* $6 is current destination address
139
* $7 is current source address
140
*/
141
$quadaligned:
142
subq $4, 32, $2 # .. .. .. E : do not unroll for small stuff
143
nop # .. .. E ..
144
nop # .. E .. ..
145
blt $2, $onequad # U .. .. .. : U L U L
146
147
/*
148
* There is a significant assumption here that the source and destination
149
* addresses differ by more than 32 bytes. In this particular case, a
150
* sparsity of registers further bounds this to be a minimum of 8 bytes.
151
* But if this isn't met, then the output result will be incorrect.
152
* Furthermore, due to a lack of available registers, we really can't
153
* unroll this to be an 8x loop (which would enable us to use the wh64
154
* instruction memory hint instruction).
155
*/
156
$unroll4:
157
EXI( ldq $1,0($7) ) # .. .. .. L
158
EXI( ldq $2,8($7) ) # .. .. L ..
159
subq $4,32,$4 # .. E .. ..
160
nop # E .. .. .. : U U L L
161
162
addq $7,16,$7 # .. .. .. E
163
EXO( stq $1,0($6) ) # .. .. L ..
164
EXO( stq $2,8($6) ) # .. L .. ..
165
subq $0,16,$0 # E .. .. .. : U L L U
166
167
addq $6,16,$6 # .. .. .. E
168
EXI( ldq $1,0($7) ) # .. .. L ..
169
EXI( ldq $2,8($7) ) # .. L .. ..
170
subq $4, 32, $3 # E .. .. .. : U U L L : is there enough for another trip?
171
172
EXO( stq $1,0($6) ) # .. .. .. L
173
EXO( stq $2,8($6) ) # .. .. L ..
174
subq $0,16,$0 # .. E .. ..
175
addq $7,16,$7 # E .. .. .. : U L L U
176
177
nop # .. .. .. E
178
nop # .. .. E ..
179
addq $6,16,$6 # .. E .. ..
180
bgt $3,$unroll4 # U .. .. .. : U L U L
181
182
nop
183
nop
184
nop
185
beq $4, $noquads
186
187
$onequad:
188
EXI( ldq $1,0($7) )
189
subq $4,8,$4
190
addq $7,8,$7
191
nop
192
193
EXO( stq $1,0($6) )
194
subq $0,8,$0
195
addq $6,8,$6
196
bne $4,$onequad
197
198
$noquads:
199
nop
200
nop
201
nop
202
beq $0,$zerolength
203
204
/*
205
* For small copies (or the tail of a larger copy), do a very simple byte loop.
206
* There's no point in doing a lot of complex alignment calculations to try to
207
* to quadword stuff for a small amount of data.
208
* $0 - remaining number of bytes left to copy
209
* $6 - current dest addr
210
* $7 - current source addr
211
*/
212
213
$onebyteloop:
214
EXI ( ldbu $2,0($7) ) # .. .. .. L : No loads in the same quad
215
addq $6,1,$6 # .. .. E .. : as the store (Section 3.8 in CWG)
216
nop # .. E .. .. :
217
nop # E .. .. .. : U L U L
218
219
$dirtyentry:
220
/*
221
* the -1 is to compensate for the inc($6) done in a previous quadpack
222
* which allows us zero dependencies within either quadpack in the loop
223
*/
224
EXO ( stb $2,-1($6) ) # .. .. .. L :
225
addq $7,1,$7 # .. .. E .. : quadpack as the load
226
subq $0,1,$0 # .. E .. .. : change count _after_ copy
227
bgt $0,$onebyteloop # U .. .. .. : U L U L
228
229
$zerolength:
230
$exitout: # Destination for exception recovery(?)
231
nop # .. .. .. E
232
nop # .. .. E ..
233
nop # .. E .. ..
234
ret $31,($28),1 # L0 .. .. .. : L U L U
235
236
$exitin:
237
238
/* A stupid byte-by-byte zeroing of the rest of the output
239
buffer. This cures security holes by never leaving
240
random kernel data around to be copied elsewhere. */
241
242
nop
243
nop
244
nop
245
mov $0,$1
246
247
$101:
248
EXO ( stb $31,0($6) ) # L
249
subq $1,1,$1 # E
250
addq $6,1,$6 # E
251
bgt $1,$101 # U
252
253
nop
254
nop
255
nop
256
ret $31,($28),1 # L0
257
258
.end __copy_user
259
260
261