Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/alpha/lib/ev6-stxncpy.S
10817 views
1
/*
2
* arch/alpha/lib/ev6-stxncpy.S
3
* 21264 version contributed by Rick Gorton <[email protected]>
4
*
5
* Copy no more than COUNT bytes of the null-terminated string from
6
* SRC to DST.
7
*
8
* This is an internal routine used by strncpy, stpncpy, and strncat.
9
* As such, it uses special linkage conventions to make implementation
10
* of these public functions more efficient.
11
*
12
* On input:
13
* t9 = return address
14
* a0 = DST
15
* a1 = SRC
16
* a2 = COUNT
17
*
18
* Furthermore, COUNT may not be zero.
19
*
20
* On output:
21
* t0 = last word written
22
* t10 = bitmask (with one bit set) indicating the byte position of
23
* the end of the range specified by COUNT
24
* t12 = bitmask (with one bit set) indicating the last byte written
25
* a0 = unaligned address of the last *word* written
26
* a2 = the number of full words left in COUNT
27
*
28
* Furthermore, v0, a3-a5, t11, and $at are untouched.
29
*
30
* Much of the information about 21264 scheduling/coding comes from:
31
* Compiler Writer's Guide for the Alpha 21264
32
* abbreviated as 'CWG' in other comments here
33
* ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
34
* Scheduling notation:
35
* E - either cluster
36
* U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
37
* L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
38
* Try not to change the actual algorithm if possible for consistency.
39
*/
40
41
#include <asm/regdef.h>
42
43
.set noat
44
.set noreorder
45
46
.text
47
48
/* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
49
doesn't like putting the entry point for a procedure somewhere in the
50
middle of the procedure descriptor. Work around this by putting the
51
aligned copy in its own procedure descriptor */
52
53
54
.ent stxncpy_aligned
55
.align 4
56
stxncpy_aligned:
57
.frame sp, 0, t9, 0
58
.prologue 0
59
60
/* On entry to this basic block:
61
t0 == the first destination word for masking back in
62
t1 == the first source word. */
63
64
/* Create the 1st output word and detect 0's in the 1st input word. */
65
lda t2, -1 # E : build a mask against false zero
66
mskqh t2, a1, t2 # U : detection in the src word (stall)
67
mskqh t1, a1, t3 # U :
68
ornot t1, t2, t2 # E : (stall)
69
70
mskql t0, a1, t0 # U : assemble the first output word
71
cmpbge zero, t2, t8 # E : bits set iff null found
72
or t0, t3, t0 # E : (stall)
73
beq a2, $a_eoc # U :
74
75
bne t8, $a_eos # U :
76
nop
77
nop
78
nop
79
80
/* On entry to this basic block:
81
t0 == a source word not containing a null. */
82
83
/*
84
* nops here to:
85
* separate store quads from load quads
86
* limit of 1 bcond/quad to permit training
87
*/
88
$a_loop:
89
stq_u t0, 0(a0) # L :
90
addq a0, 8, a0 # E :
91
subq a2, 1, a2 # E :
92
nop
93
94
ldq_u t0, 0(a1) # L :
95
addq a1, 8, a1 # E :
96
cmpbge zero, t0, t8 # E :
97
beq a2, $a_eoc # U :
98
99
beq t8, $a_loop # U :
100
nop
101
nop
102
nop
103
104
/* Take care of the final (partial) word store. At this point
105
the end-of-count bit is set in t8 iff it applies.
106
107
On entry to this basic block we have:
108
t0 == the source word containing the null
109
t8 == the cmpbge mask that found it. */
110
111
$a_eos:
112
negq t8, t12 # E : find low bit set
113
and t8, t12, t12 # E : (stall)
114
/* For the sake of the cache, don't read a destination word
115
if we're not going to need it. */
116
and t12, 0x80, t6 # E : (stall)
117
bne t6, 1f # U : (stall)
118
119
/* We're doing a partial word store and so need to combine
120
our source and original destination words. */
121
ldq_u t1, 0(a0) # L :
122
subq t12, 1, t6 # E :
123
or t12, t6, t8 # E : (stall)
124
zapnot t0, t8, t0 # U : clear src bytes > null (stall)
125
126
zap t1, t8, t1 # .. e1 : clear dst bytes <= null
127
or t0, t1, t0 # e1 : (stall)
128
nop
129
nop
130
131
1: stq_u t0, 0(a0) # L :
132
ret (t9) # L0 : Latency=3
133
nop
134
nop
135
136
/* Add the end-of-count bit to the eos detection bitmask. */
137
$a_eoc:
138
or t10, t8, t8 # E :
139
br $a_eos # L0 : Latency=3
140
nop
141
nop
142
143
.end stxncpy_aligned
144
145
.align 4
146
.ent __stxncpy
147
.globl __stxncpy
148
__stxncpy:
149
.frame sp, 0, t9, 0
150
.prologue 0
151
152
/* Are source and destination co-aligned? */
153
xor a0, a1, t1 # E :
154
and a0, 7, t0 # E : find dest misalignment
155
and t1, 7, t1 # E : (stall)
156
addq a2, t0, a2 # E : bias count by dest misalignment (stall)
157
158
subq a2, 1, a2 # E :
159
and a2, 7, t2 # E : (stall)
160
srl a2, 3, a2 # U : a2 = loop counter = (count - 1)/8 (stall)
161
addq zero, 1, t10 # E :
162
163
sll t10, t2, t10 # U : t10 = bitmask of last count byte
164
bne t1, $unaligned # U :
165
/* We are co-aligned; take care of a partial first word. */
166
ldq_u t1, 0(a1) # L : load first src word
167
addq a1, 8, a1 # E :
168
169
beq t0, stxncpy_aligned # U : avoid loading dest word if not needed
170
ldq_u t0, 0(a0) # L :
171
nop
172
nop
173
174
br stxncpy_aligned # .. e1 :
175
nop
176
nop
177
nop
178
179
180
181
/* The source and destination are not co-aligned. Align the destination
182
and cope. We have to be very careful about not reading too much and
183
causing a SEGV. */
184
185
.align 4
186
$u_head:
187
/* We know just enough now to be able to assemble the first
188
full source word. We can still find a zero at the end of it
189
that prevents us from outputting the whole thing.
190
191
On entry to this basic block:
192
t0 == the first dest word, unmasked
193
t1 == the shifted low bits of the first source word
194
t6 == bytemask that is -1 in dest word bytes */
195
196
ldq_u t2, 8(a1) # L : Latency=3 load second src word
197
addq a1, 8, a1 # E :
198
mskql t0, a0, t0 # U : mask trailing garbage in dst
199
extqh t2, a1, t4 # U : (3 cycle stall on t2)
200
201
or t1, t4, t1 # E : first aligned src word complete (stall)
202
mskqh t1, a0, t1 # U : mask leading garbage in src (stall)
203
or t0, t1, t0 # E : first output word complete (stall)
204
or t0, t6, t6 # E : mask original data for zero test (stall)
205
206
cmpbge zero, t6, t8 # E :
207
beq a2, $u_eocfin # U :
208
lda t6, -1 # E :
209
nop
210
211
bne t8, $u_final # U :
212
mskql t6, a1, t6 # U : mask out bits already seen
213
stq_u t0, 0(a0) # L : store first output word
214
or t6, t2, t2 # E : (stall)
215
216
cmpbge zero, t2, t8 # E : find nulls in second partial
217
addq a0, 8, a0 # E :
218
subq a2, 1, a2 # E :
219
bne t8, $u_late_head_exit # U :
220
221
/* Finally, we've got all the stupid leading edge cases taken care
222
of and we can set up to enter the main loop. */
223
extql t2, a1, t1 # U : position hi-bits of lo word
224
beq a2, $u_eoc # U :
225
ldq_u t2, 8(a1) # L : read next high-order source word
226
addq a1, 8, a1 # E :
227
228
extqh t2, a1, t0 # U : position lo-bits of hi word (stall)
229
cmpbge zero, t2, t8 # E :
230
nop
231
bne t8, $u_eos # U :
232
233
/* Unaligned copy main loop. In order to avoid reading too much,
234
the loop is structured to detect zeros in aligned source words.
235
This has, unfortunately, effectively pulled half of a loop
236
iteration out into the head and half into the tail, but it does
237
prevent nastiness from accumulating in the very thing we want
238
to run as fast as possible.
239
240
On entry to this basic block:
241
t0 == the shifted low-order bits from the current source word
242
t1 == the shifted high-order bits from the previous source word
243
t2 == the unshifted current source word
244
245
We further know that t2 does not contain a null terminator. */
246
247
.align 4
248
$u_loop:
249
or t0, t1, t0 # E : current dst word now complete
250
subq a2, 1, a2 # E : decrement word count
251
extql t2, a1, t1 # U : extract low bits for next time
252
addq a0, 8, a0 # E :
253
254
stq_u t0, -8(a0) # U : save the current word
255
beq a2, $u_eoc # U :
256
ldq_u t2, 8(a1) # U : Latency=3 load high word for next time
257
addq a1, 8, a1 # E :
258
259
extqh t2, a1, t0 # U : extract low bits (2 cycle stall)
260
cmpbge zero, t2, t8 # E : test new word for eos
261
nop
262
beq t8, $u_loop # U :
263
264
/* We've found a zero somewhere in the source word we just read.
265
If it resides in the lower half, we have one (probably partial)
266
word to write out, and if it resides in the upper half, we
267
have one full and one partial word left to write out.
268
269
On entry to this basic block:
270
t0 == the shifted low-order bits from the current source word
271
t1 == the shifted high-order bits from the previous source word
272
t2 == the unshifted current source word. */
273
$u_eos:
274
or t0, t1, t0 # E : first (partial) source word complete
275
nop
276
cmpbge zero, t0, t8 # E : is the null in this first bit? (stall)
277
bne t8, $u_final # U : (stall)
278
279
stq_u t0, 0(a0) # L : the null was in the high-order bits
280
addq a0, 8, a0 # E :
281
subq a2, 1, a2 # E :
282
nop
283
284
$u_late_head_exit:
285
extql t2, a1, t0 # U :
286
cmpbge zero, t0, t8 # E :
287
or t8, t10, t6 # E : (stall)
288
cmoveq a2, t6, t8 # E : Latency=2, extra map slot (stall)
289
290
/* Take care of a final (probably partial) result word.
291
On entry to this basic block:
292
t0 == assembled source word
293
t8 == cmpbge mask that found the null. */
294
$u_final:
295
negq t8, t6 # E : isolate low bit set
296
and t6, t8, t12 # E : (stall)
297
and t12, 0x80, t6 # E : avoid dest word load if we can (stall)
298
bne t6, 1f # U : (stall)
299
300
ldq_u t1, 0(a0) # L :
301
subq t12, 1, t6 # E :
302
or t6, t12, t8 # E : (stall)
303
zapnot t0, t8, t0 # U : kill source bytes > null
304
305
zap t1, t8, t1 # U : kill dest bytes <= null
306
or t0, t1, t0 # E : (stall)
307
nop
308
nop
309
310
1: stq_u t0, 0(a0) # L :
311
ret (t9) # L0 : Latency=3
312
313
/* Got to end-of-count before end of string.
314
On entry to this basic block:
315
t1 == the shifted high-order bits from the previous source word */
316
$u_eoc:
317
and a1, 7, t6 # E : avoid final load if possible
318
sll t10, t6, t6 # U : (stall)
319
and t6, 0xff, t6 # E : (stall)
320
bne t6, 1f # U : (stall)
321
322
ldq_u t2, 8(a1) # L : load final src word
323
nop
324
extqh t2, a1, t0 # U : extract low bits for last word (stall)
325
or t1, t0, t1 # E : (stall)
326
327
1: cmpbge zero, t1, t8 # E :
328
mov t1, t0 # E :
329
330
$u_eocfin: # end-of-count, final word
331
or t10, t8, t8 # E :
332
br $u_final # L0 : Latency=3
333
334
/* Unaligned copy entry point. */
335
.align 4
336
$unaligned:
337
338
ldq_u t1, 0(a1) # L : load first source word
339
and a0, 7, t4 # E : find dest misalignment
340
and a1, 7, t5 # E : find src misalignment
341
/* Conditionally load the first destination word and a bytemask
342
with 0xff indicating that the destination byte is sacrosanct. */
343
mov zero, t0 # E :
344
345
mov zero, t6 # E :
346
beq t4, 1f # U :
347
ldq_u t0, 0(a0) # L :
348
lda t6, -1 # E :
349
350
mskql t6, a0, t6 # U :
351
nop
352
nop
353
subq a1, t4, a1 # E : sub dest misalignment from src addr
354
355
/* If source misalignment is larger than dest misalignment, we need
356
extra startup checks to avoid SEGV. */
357
358
1: cmplt t4, t5, t12 # E :
359
extql t1, a1, t1 # U : shift src into place
360
lda t2, -1 # E : for creating masks later
361
beq t12, $u_head # U : (stall)
362
363
extql t2, a1, t2 # U :
364
cmpbge zero, t1, t8 # E : is there a zero?
365
andnot t2, t6, t2 # E : dest mask for a single word copy
366
or t8, t10, t5 # E : test for end-of-count too
367
368
cmpbge zero, t2, t3 # E :
369
cmoveq a2, t5, t8 # E : Latency=2, extra map slot
370
nop # E : keep with cmoveq
371
andnot t8, t3, t8 # E : (stall)
372
373
beq t8, $u_head # U :
374
/* At this point we've found a zero in the first partial word of
375
the source. We need to isolate the valid source data and mask
376
it into the original destination data. (Incidentally, we know
377
that we'll need at least one byte of that original dest word.) */
378
ldq_u t0, 0(a0) # L :
379
negq t8, t6 # E : build bitmask of bytes <= zero
380
mskqh t1, t4, t1 # U :
381
382
and t6, t8, t12 # E :
383
subq t12, 1, t6 # E : (stall)
384
or t6, t12, t8 # E : (stall)
385
zapnot t2, t8, t2 # U : prepare source word; mirror changes (stall)
386
387
zapnot t1, t8, t1 # U : to source validity mask
388
andnot t0, t2, t0 # E : zero place for source to reside
389
or t0, t1, t0 # E : and put it there (stall both t0, t1)
390
stq_u t0, 0(a0) # L : (stall)
391
392
ret (t9) # L0 : Latency=3
393
nop
394
nop
395
nop
396
397
.end __stxncpy
398
399