Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/arm/common/uengine.c
10817 views
1
/*
2
* Generic library functions for the microengines found on the Intel
3
* IXP2000 series of network processors.
4
*
5
* Copyright (C) 2004, 2005 Lennert Buytenhek <[email protected]>
6
* Dedicated to Marija Kulikova.
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU Lesser General Public License as
10
* published by the Free Software Foundation; either version 2.1 of the
11
* License, or (at your option) any later version.
12
*/
13
14
#include <linux/kernel.h>
15
#include <linux/init.h>
16
#include <linux/slab.h>
17
#include <linux/module.h>
18
#include <linux/string.h>
19
#include <linux/io.h>
20
#include <mach/hardware.h>
21
#include <asm/hardware/uengine.h>
22
23
#if defined(CONFIG_ARCH_IXP2000)
24
#define IXP_UENGINE_CSR_VIRT_BASE IXP2000_UENGINE_CSR_VIRT_BASE
25
#define IXP_PRODUCT_ID IXP2000_PRODUCT_ID
26
#define IXP_MISC_CONTROL IXP2000_MISC_CONTROL
27
#define IXP_RESET1 IXP2000_RESET1
28
#else
29
#if defined(CONFIG_ARCH_IXP23XX)
30
#define IXP_UENGINE_CSR_VIRT_BASE IXP23XX_UENGINE_CSR_VIRT_BASE
31
#define IXP_PRODUCT_ID IXP23XX_PRODUCT_ID
32
#define IXP_MISC_CONTROL IXP23XX_MISC_CONTROL
33
#define IXP_RESET1 IXP23XX_RESET1
34
#else
35
#error unknown platform
36
#endif
37
#endif
38
39
#define USTORE_ADDRESS 0x000
40
#define USTORE_DATA_LOWER 0x004
41
#define USTORE_DATA_UPPER 0x008
42
#define CTX_ENABLES 0x018
43
#define CC_ENABLE 0x01c
44
#define CSR_CTX_POINTER 0x020
45
#define INDIRECT_CTX_STS 0x040
46
#define ACTIVE_CTX_STS 0x044
47
#define INDIRECT_CTX_SIG_EVENTS 0x048
48
#define INDIRECT_CTX_WAKEUP_EVENTS 0x050
49
#define NN_PUT 0x080
50
#define NN_GET 0x084
51
#define TIMESTAMP_LOW 0x0c0
52
#define TIMESTAMP_HIGH 0x0c4
53
#define T_INDEX_BYTE_INDEX 0x0f4
54
#define LOCAL_CSR_STATUS 0x180
55
56
u32 ixp2000_uengine_mask;
57
58
static void *ixp2000_uengine_csr_area(int uengine)
59
{
60
return ((void *)IXP_UENGINE_CSR_VIRT_BASE) + (uengine << 10);
61
}
62
63
/*
64
* LOCAL_CSR_STATUS=1 after a read or write to a microengine's CSR
65
* space means that the microengine we tried to access was also trying
66
* to access its own CSR space on the same clock cycle as we did. When
67
* this happens, we lose the arbitration process by default, and the
68
* read or write we tried to do was not actually performed, so we try
69
* again until it succeeds.
70
*/
71
u32 ixp2000_uengine_csr_read(int uengine, int offset)
72
{
73
void *uebase;
74
u32 *local_csr_status;
75
u32 *reg;
76
u32 value;
77
78
uebase = ixp2000_uengine_csr_area(uengine);
79
80
local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
81
reg = (u32 *)(uebase + offset);
82
do {
83
value = ixp2000_reg_read(reg);
84
} while (ixp2000_reg_read(local_csr_status) & 1);
85
86
return value;
87
}
88
EXPORT_SYMBOL(ixp2000_uengine_csr_read);
89
90
void ixp2000_uengine_csr_write(int uengine, int offset, u32 value)
91
{
92
void *uebase;
93
u32 *local_csr_status;
94
u32 *reg;
95
96
uebase = ixp2000_uengine_csr_area(uengine);
97
98
local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
99
reg = (u32 *)(uebase + offset);
100
do {
101
ixp2000_reg_write(reg, value);
102
} while (ixp2000_reg_read(local_csr_status) & 1);
103
}
104
EXPORT_SYMBOL(ixp2000_uengine_csr_write);
105
106
void ixp2000_uengine_reset(u32 uengine_mask)
107
{
108
u32 value;
109
110
value = ixp2000_reg_read(IXP_RESET1) & ~ixp2000_uengine_mask;
111
112
uengine_mask &= ixp2000_uengine_mask;
113
ixp2000_reg_wrb(IXP_RESET1, value | uengine_mask);
114
ixp2000_reg_wrb(IXP_RESET1, value);
115
}
116
EXPORT_SYMBOL(ixp2000_uengine_reset);
117
118
void ixp2000_uengine_set_mode(int uengine, u32 mode)
119
{
120
/*
121
* CTL_STR_PAR_EN: unconditionally enable parity checking on
122
* control store.
123
*/
124
mode |= 0x10000000;
125
ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mode);
126
127
/*
128
* Enable updating of condition codes.
129
*/
130
ixp2000_uengine_csr_write(uengine, CC_ENABLE, 0x00002000);
131
132
/*
133
* Initialise other per-microengine registers.
134
*/
135
ixp2000_uengine_csr_write(uengine, NN_PUT, 0x00);
136
ixp2000_uengine_csr_write(uengine, NN_GET, 0x00);
137
ixp2000_uengine_csr_write(uengine, T_INDEX_BYTE_INDEX, 0);
138
}
139
EXPORT_SYMBOL(ixp2000_uengine_set_mode);
140
141
static int make_even_parity(u32 x)
142
{
143
return hweight32(x) & 1;
144
}
145
146
static void ustore_write(int uengine, u64 insn)
147
{
148
/*
149
* Generate even parity for top and bottom 20 bits.
150
*/
151
insn |= (u64)make_even_parity((insn >> 20) & 0x000fffff) << 41;
152
insn |= (u64)make_even_parity(insn & 0x000fffff) << 40;
153
154
/*
155
* Write to microstore. The second write auto-increments
156
* the USTORE_ADDRESS index register.
157
*/
158
ixp2000_uengine_csr_write(uengine, USTORE_DATA_LOWER, (u32)insn);
159
ixp2000_uengine_csr_write(uengine, USTORE_DATA_UPPER, (u32)(insn >> 32));
160
}
161
162
void ixp2000_uengine_load_microcode(int uengine, u8 *ucode, int insns)
163
{
164
int i;
165
166
/*
167
* Start writing to microstore at address 0.
168
*/
169
ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x80000000);
170
for (i = 0; i < insns; i++) {
171
u64 insn;
172
173
insn = (((u64)ucode[0]) << 32) |
174
(((u64)ucode[1]) << 24) |
175
(((u64)ucode[2]) << 16) |
176
(((u64)ucode[3]) << 8) |
177
((u64)ucode[4]);
178
ucode += 5;
179
180
ustore_write(uengine, insn);
181
}
182
183
/*
184
* Pad with a few NOPs at the end (to avoid the microengine
185
* aborting as it prefetches beyond the last instruction), unless
186
* we run off the end of the instruction store first, at which
187
* point the address register will wrap back to zero.
188
*/
189
for (i = 0; i < 4; i++) {
190
u32 addr;
191
192
addr = ixp2000_uengine_csr_read(uengine, USTORE_ADDRESS);
193
if (addr == 0x80000000)
194
break;
195
ustore_write(uengine, 0xf0000c0300ULL);
196
}
197
198
/*
199
* End programming.
200
*/
201
ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x00000000);
202
}
203
EXPORT_SYMBOL(ixp2000_uengine_load_microcode);
204
205
void ixp2000_uengine_init_context(int uengine, int context, int pc)
206
{
207
/*
208
* Select the right context for indirect access.
209
*/
210
ixp2000_uengine_csr_write(uengine, CSR_CTX_POINTER, context);
211
212
/*
213
* Initialise signal masks to immediately go to Ready state.
214
*/
215
ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_SIG_EVENTS, 1);
216
ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_WAKEUP_EVENTS, 1);
217
218
/*
219
* Set program counter.
220
*/
221
ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_STS, pc);
222
}
223
EXPORT_SYMBOL(ixp2000_uengine_init_context);
224
225
void ixp2000_uengine_start_contexts(int uengine, u8 ctx_mask)
226
{
227
u32 mask;
228
229
/*
230
* Enable the specified context to go to Executing state.
231
*/
232
mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
233
mask |= ctx_mask << 8;
234
ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
235
}
236
EXPORT_SYMBOL(ixp2000_uengine_start_contexts);
237
238
void ixp2000_uengine_stop_contexts(int uengine, u8 ctx_mask)
239
{
240
u32 mask;
241
242
/*
243
* Disable the Ready->Executing transition. Note that this
244
* does not stop the context until it voluntarily yields.
245
*/
246
mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
247
mask &= ~(ctx_mask << 8);
248
ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
249
}
250
EXPORT_SYMBOL(ixp2000_uengine_stop_contexts);
251
252
static int check_ixp_type(struct ixp2000_uengine_code *c)
253
{
254
u32 product_id;
255
u32 rev;
256
257
product_id = ixp2000_reg_read(IXP_PRODUCT_ID);
258
if (((product_id >> 16) & 0x1f) != 0)
259
return 0;
260
261
switch ((product_id >> 8) & 0xff) {
262
#ifdef CONFIG_ARCH_IXP2000
263
case 0: /* IXP2800 */
264
if (!(c->cpu_model_bitmask & 4))
265
return 0;
266
break;
267
268
case 1: /* IXP2850 */
269
if (!(c->cpu_model_bitmask & 8))
270
return 0;
271
break;
272
273
case 2: /* IXP2400 */
274
if (!(c->cpu_model_bitmask & 2))
275
return 0;
276
break;
277
#endif
278
279
#ifdef CONFIG_ARCH_IXP23XX
280
case 4: /* IXP23xx */
281
if (!(c->cpu_model_bitmask & 0x3f0))
282
return 0;
283
break;
284
#endif
285
286
default:
287
return 0;
288
}
289
290
rev = product_id & 0xff;
291
if (rev < c->cpu_min_revision || rev > c->cpu_max_revision)
292
return 0;
293
294
return 1;
295
}
296
297
static void generate_ucode(u8 *ucode, u32 *gpr_a, u32 *gpr_b)
298
{
299
int offset;
300
int i;
301
302
offset = 0;
303
304
for (i = 0; i < 128; i++) {
305
u8 b3;
306
u8 b2;
307
u8 b1;
308
u8 b0;
309
310
b3 = (gpr_a[i] >> 24) & 0xff;
311
b2 = (gpr_a[i] >> 16) & 0xff;
312
b1 = (gpr_a[i] >> 8) & 0xff;
313
b0 = gpr_a[i] & 0xff;
314
315
/* immed[@ai, (b1 << 8) | b0] */
316
/* 11110000 0000VVVV VVVV11VV VVVVVV00 1IIIIIII */
317
ucode[offset++] = 0xf0;
318
ucode[offset++] = (b1 >> 4);
319
ucode[offset++] = (b1 << 4) | 0x0c | (b0 >> 6);
320
ucode[offset++] = (b0 << 2);
321
ucode[offset++] = 0x80 | i;
322
323
/* immed_w1[@ai, (b3 << 8) | b2] */
324
/* 11110100 0100VVVV VVVV11VV VVVVVV00 1IIIIIII */
325
ucode[offset++] = 0xf4;
326
ucode[offset++] = 0x40 | (b3 >> 4);
327
ucode[offset++] = (b3 << 4) | 0x0c | (b2 >> 6);
328
ucode[offset++] = (b2 << 2);
329
ucode[offset++] = 0x80 | i;
330
}
331
332
for (i = 0; i < 128; i++) {
333
u8 b3;
334
u8 b2;
335
u8 b1;
336
u8 b0;
337
338
b3 = (gpr_b[i] >> 24) & 0xff;
339
b2 = (gpr_b[i] >> 16) & 0xff;
340
b1 = (gpr_b[i] >> 8) & 0xff;
341
b0 = gpr_b[i] & 0xff;
342
343
/* immed[@bi, (b1 << 8) | b0] */
344
/* 11110000 0000VVVV VVVV001I IIIIII11 VVVVVVVV */
345
ucode[offset++] = 0xf0;
346
ucode[offset++] = (b1 >> 4);
347
ucode[offset++] = (b1 << 4) | 0x02 | (i >> 6);
348
ucode[offset++] = (i << 2) | 0x03;
349
ucode[offset++] = b0;
350
351
/* immed_w1[@bi, (b3 << 8) | b2] */
352
/* 11110100 0100VVVV VVVV001I IIIIII11 VVVVVVVV */
353
ucode[offset++] = 0xf4;
354
ucode[offset++] = 0x40 | (b3 >> 4);
355
ucode[offset++] = (b3 << 4) | 0x02 | (i >> 6);
356
ucode[offset++] = (i << 2) | 0x03;
357
ucode[offset++] = b2;
358
}
359
360
/* ctx_arb[kill] */
361
ucode[offset++] = 0xe0;
362
ucode[offset++] = 0x00;
363
ucode[offset++] = 0x01;
364
ucode[offset++] = 0x00;
365
ucode[offset++] = 0x00;
366
}
367
368
static int set_initial_registers(int uengine, struct ixp2000_uengine_code *c)
369
{
370
int per_ctx_regs;
371
u32 *gpr_a;
372
u32 *gpr_b;
373
u8 *ucode;
374
int i;
375
376
gpr_a = kzalloc(128 * sizeof(u32), GFP_KERNEL);
377
gpr_b = kzalloc(128 * sizeof(u32), GFP_KERNEL);
378
ucode = kmalloc(513 * 5, GFP_KERNEL);
379
if (gpr_a == NULL || gpr_b == NULL || ucode == NULL) {
380
kfree(ucode);
381
kfree(gpr_b);
382
kfree(gpr_a);
383
return 1;
384
}
385
386
per_ctx_regs = 16;
387
if (c->uengine_parameters & IXP2000_UENGINE_4_CONTEXTS)
388
per_ctx_regs = 32;
389
390
for (i = 0; i < 256; i++) {
391
struct ixp2000_reg_value *r = c->initial_reg_values + i;
392
u32 *bank;
393
int inc;
394
int j;
395
396
if (r->reg == -1)
397
break;
398
399
bank = (r->reg & 0x400) ? gpr_b : gpr_a;
400
inc = (r->reg & 0x80) ? 128 : per_ctx_regs;
401
402
j = r->reg & 0x7f;
403
while (j < 128) {
404
bank[j] = r->value;
405
j += inc;
406
}
407
}
408
409
generate_ucode(ucode, gpr_a, gpr_b);
410
ixp2000_uengine_load_microcode(uengine, ucode, 513);
411
ixp2000_uengine_init_context(uengine, 0, 0);
412
ixp2000_uengine_start_contexts(uengine, 0x01);
413
for (i = 0; i < 100; i++) {
414
u32 status;
415
416
status = ixp2000_uengine_csr_read(uengine, ACTIVE_CTX_STS);
417
if (!(status & 0x80000000))
418
break;
419
}
420
ixp2000_uengine_stop_contexts(uengine, 0x01);
421
422
kfree(ucode);
423
kfree(gpr_b);
424
kfree(gpr_a);
425
426
return !!(i == 100);
427
}
428
429
int ixp2000_uengine_load(int uengine, struct ixp2000_uengine_code *c)
430
{
431
int ctx;
432
433
if (!check_ixp_type(c))
434
return 1;
435
436
if (!(ixp2000_uengine_mask & (1 << uengine)))
437
return 1;
438
439
ixp2000_uengine_reset(1 << uengine);
440
ixp2000_uengine_set_mode(uengine, c->uengine_parameters);
441
if (set_initial_registers(uengine, c))
442
return 1;
443
ixp2000_uengine_load_microcode(uengine, c->insns, c->num_insns);
444
445
for (ctx = 0; ctx < 8; ctx++)
446
ixp2000_uengine_init_context(uengine, ctx, 0);
447
448
return 0;
449
}
450
EXPORT_SYMBOL(ixp2000_uengine_load);
451
452
453
static int __init ixp2000_uengine_init(void)
454
{
455
int uengine;
456
u32 value;
457
458
/*
459
* Determine number of microengines present.
460
*/
461
switch ((ixp2000_reg_read(IXP_PRODUCT_ID) >> 8) & 0x1fff) {
462
#ifdef CONFIG_ARCH_IXP2000
463
case 0: /* IXP2800 */
464
case 1: /* IXP2850 */
465
ixp2000_uengine_mask = 0x00ff00ff;
466
break;
467
468
case 2: /* IXP2400 */
469
ixp2000_uengine_mask = 0x000f000f;
470
break;
471
#endif
472
473
#ifdef CONFIG_ARCH_IXP23XX
474
case 4: /* IXP23xx */
475
ixp2000_uengine_mask = (*IXP23XX_EXP_CFG_FUSE >> 8) & 0xf;
476
break;
477
#endif
478
479
default:
480
printk(KERN_INFO "Detected unknown IXP2000 model (%.8x)\n",
481
(unsigned int)ixp2000_reg_read(IXP_PRODUCT_ID));
482
ixp2000_uengine_mask = 0x00000000;
483
break;
484
}
485
486
/*
487
* Reset microengines.
488
*/
489
ixp2000_uengine_reset(ixp2000_uengine_mask);
490
491
/*
492
* Synchronise timestamp counters across all microengines.
493
*/
494
value = ixp2000_reg_read(IXP_MISC_CONTROL);
495
ixp2000_reg_wrb(IXP_MISC_CONTROL, value & ~0x80);
496
for (uengine = 0; uengine < 32; uengine++) {
497
if (ixp2000_uengine_mask & (1 << uengine)) {
498
ixp2000_uengine_csr_write(uengine, TIMESTAMP_LOW, 0);
499
ixp2000_uengine_csr_write(uengine, TIMESTAMP_HIGH, 0);
500
}
501
}
502
ixp2000_reg_wrb(IXP_MISC_CONTROL, value | 0x80);
503
504
return 0;
505
}
506
507
subsys_initcall(ixp2000_uengine_init);
508
509