Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/arm/include/asm/bitops.h
17302 views
1
/*
2
* Copyright 1995, Russell King.
3
* Various bits and pieces copyrights include:
4
* Linus Torvalds (test_bit).
5
* Big endian support: Copyright 2001, Nicolas Pitre
6
* reworked by rmk.
7
*
8
* bit 0 is the LSB of an "unsigned long" quantity.
9
*
10
* Please note that the code in this file should never be included
11
* from user space. Many of these are not implemented in assembler
12
* since they would be too costly. Also, they require privileged
13
* instructions (which are not available from user mode) to ensure
14
* that they are atomic.
15
*/
16
17
#ifndef __ASM_ARM_BITOPS_H
18
#define __ASM_ARM_BITOPS_H
19
20
#ifdef __KERNEL__
21
22
#ifndef _LINUX_BITOPS_H
23
#error only <linux/bitops.h> can be included directly
24
#endif
25
26
#include <linux/compiler.h>
27
#include <asm/system.h>
28
29
#define smp_mb__before_clear_bit() mb()
30
#define smp_mb__after_clear_bit() mb()
31
32
/*
33
* These functions are the basis of our bit ops.
34
*
35
* First, the atomic bitops. These use native endian.
36
*/
37
static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
38
{
39
unsigned long flags;
40
unsigned long mask = 1UL << (bit & 31);
41
42
p += bit >> 5;
43
44
raw_local_irq_save(flags);
45
*p |= mask;
46
raw_local_irq_restore(flags);
47
}
48
49
static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
50
{
51
unsigned long flags;
52
unsigned long mask = 1UL << (bit & 31);
53
54
p += bit >> 5;
55
56
raw_local_irq_save(flags);
57
*p &= ~mask;
58
raw_local_irq_restore(flags);
59
}
60
61
static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
62
{
63
unsigned long flags;
64
unsigned long mask = 1UL << (bit & 31);
65
66
p += bit >> 5;
67
68
raw_local_irq_save(flags);
69
*p ^= mask;
70
raw_local_irq_restore(flags);
71
}
72
73
static inline int
74
____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
75
{
76
unsigned long flags;
77
unsigned int res;
78
unsigned long mask = 1UL << (bit & 31);
79
80
p += bit >> 5;
81
82
raw_local_irq_save(flags);
83
res = *p;
84
*p = res | mask;
85
raw_local_irq_restore(flags);
86
87
return (res & mask) != 0;
88
}
89
90
static inline int
91
____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
92
{
93
unsigned long flags;
94
unsigned int res;
95
unsigned long mask = 1UL << (bit & 31);
96
97
p += bit >> 5;
98
99
raw_local_irq_save(flags);
100
res = *p;
101
*p = res & ~mask;
102
raw_local_irq_restore(flags);
103
104
return (res & mask) != 0;
105
}
106
107
static inline int
108
____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
109
{
110
unsigned long flags;
111
unsigned int res;
112
unsigned long mask = 1UL << (bit & 31);
113
114
p += bit >> 5;
115
116
raw_local_irq_save(flags);
117
res = *p;
118
*p = res ^ mask;
119
raw_local_irq_restore(flags);
120
121
return (res & mask) != 0;
122
}
123
124
#include <asm-generic/bitops/non-atomic.h>
125
126
/*
127
* A note about Endian-ness.
128
* -------------------------
129
*
130
* When the ARM is put into big endian mode via CR15, the processor
131
* merely swaps the order of bytes within words, thus:
132
*
133
* ------------ physical data bus bits -----------
134
* D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
135
* little byte 3 byte 2 byte 1 byte 0
136
* big byte 0 byte 1 byte 2 byte 3
137
*
138
* This means that reading a 32-bit word at address 0 returns the same
139
* value irrespective of the endian mode bit.
140
*
141
* Peripheral devices should be connected with the data bus reversed in
142
* "Big Endian" mode. ARM Application Note 61 is applicable, and is
143
* available from http://www.arm.com/.
144
*
145
* The following assumes that the data bus connectivity for big endian
146
* mode has been followed.
147
*
148
* Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
149
*/
150
151
/*
152
* Native endian assembly bitops. nr = 0 -> word 0 bit 0.
153
*/
154
extern void _set_bit(int nr, volatile unsigned long * p);
155
extern void _clear_bit(int nr, volatile unsigned long * p);
156
extern void _change_bit(int nr, volatile unsigned long * p);
157
extern int _test_and_set_bit(int nr, volatile unsigned long * p);
158
extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
159
extern int _test_and_change_bit(int nr, volatile unsigned long * p);
160
161
/*
162
* Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
163
*/
164
extern int _find_first_zero_bit_le(const void * p, unsigned size);
165
extern int _find_next_zero_bit_le(const void * p, int size, int offset);
166
extern int _find_first_bit_le(const unsigned long *p, unsigned size);
167
extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
168
169
/*
170
* Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
171
*/
172
extern int _find_first_zero_bit_be(const void * p, unsigned size);
173
extern int _find_next_zero_bit_be(const void * p, int size, int offset);
174
extern int _find_first_bit_be(const unsigned long *p, unsigned size);
175
extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
176
177
#ifndef CONFIG_SMP
178
/*
179
* The __* form of bitops are non-atomic and may be reordered.
180
*/
181
#define ATOMIC_BITOP(name,nr,p) \
182
(__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
183
#else
184
#define ATOMIC_BITOP(name,nr,p) _##name(nr,p)
185
#endif
186
187
/*
188
* Native endian atomic definitions.
189
*/
190
#define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p)
191
#define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p)
192
#define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p)
193
#define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p)
194
#define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p)
195
#define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p)
196
197
#ifndef __ARMEB__
198
/*
199
* These are the little endian, atomic definitions.
200
*/
201
#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
202
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
203
#define find_first_bit(p,sz) _find_first_bit_le(p,sz)
204
#define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
205
206
#else
207
/*
208
* These are the big endian, atomic definitions.
209
*/
210
#define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
211
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
212
#define find_first_bit(p,sz) _find_first_bit_be(p,sz)
213
#define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
214
215
#endif
216
217
#if __LINUX_ARM_ARCH__ < 5
218
219
#include <asm-generic/bitops/ffz.h>
220
#include <asm-generic/bitops/__fls.h>
221
#include <asm-generic/bitops/__ffs.h>
222
#include <asm-generic/bitops/fls.h>
223
#include <asm-generic/bitops/ffs.h>
224
225
#else
226
227
static inline int constant_fls(int x)
228
{
229
int r = 32;
230
231
if (!x)
232
return 0;
233
if (!(x & 0xffff0000u)) {
234
x <<= 16;
235
r -= 16;
236
}
237
if (!(x & 0xff000000u)) {
238
x <<= 8;
239
r -= 8;
240
}
241
if (!(x & 0xf0000000u)) {
242
x <<= 4;
243
r -= 4;
244
}
245
if (!(x & 0xc0000000u)) {
246
x <<= 2;
247
r -= 2;
248
}
249
if (!(x & 0x80000000u)) {
250
x <<= 1;
251
r -= 1;
252
}
253
return r;
254
}
255
256
/*
257
* On ARMv5 and above those functions can be implemented around
258
* the clz instruction for much better code efficiency.
259
*/
260
261
static inline int fls(int x)
262
{
263
int ret;
264
265
if (__builtin_constant_p(x))
266
return constant_fls(x);
267
268
asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
269
ret = 32 - ret;
270
return ret;
271
}
272
273
#define __fls(x) (fls(x) - 1)
274
#define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
275
#define __ffs(x) (ffs(x) - 1)
276
#define ffz(x) __ffs( ~(x) )
277
278
#endif
279
280
#include <asm-generic/bitops/fls64.h>
281
282
#include <asm-generic/bitops/sched.h>
283
#include <asm-generic/bitops/hweight.h>
284
#include <asm-generic/bitops/lock.h>
285
286
#ifdef __ARMEB__
287
288
static inline int find_first_zero_bit_le(const void *p, unsigned size)
289
{
290
return _find_first_zero_bit_le(p, size);
291
}
292
#define find_first_zero_bit_le find_first_zero_bit_le
293
294
static inline int find_next_zero_bit_le(const void *p, int size, int offset)
295
{
296
return _find_next_zero_bit_le(p, size, offset);
297
}
298
#define find_next_zero_bit_le find_next_zero_bit_le
299
300
static inline int find_next_bit_le(const void *p, int size, int offset)
301
{
302
return _find_next_bit_le(p, size, offset);
303
}
304
#define find_next_bit_le find_next_bit_le
305
306
#endif
307
308
#include <asm-generic/bitops/le.h>
309
310
/*
311
* Ext2 is defined to use little-endian byte ordering.
312
*/
313
#define ext2_set_bit_atomic(lock, nr, p) \
314
test_and_set_bit_le(nr, p)
315
#define ext2_clear_bit_atomic(lock, nr, p) \
316
test_and_clear_bit_le(nr, p)
317
318
#endif /* __KERNEL__ */
319
320
#endif /* _ARM_BITOPS_H */
321
322