Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/arm/include/asm/div64.h
17305 views
1
#ifndef __ASM_ARM_DIV64
2
#define __ASM_ARM_DIV64
3
4
#include <asm/system.h>
5
#include <linux/types.h>
6
7
/*
8
* The semantics of do_div() are:
9
*
10
* uint32_t do_div(uint64_t *n, uint32_t base)
11
* {
12
* uint32_t remainder = *n % base;
13
* *n = *n / base;
14
* return remainder;
15
* }
16
*
17
* In other words, a 64-bit dividend with a 32-bit divisor producing
18
* a 64-bit result and a 32-bit remainder. To accomplish this optimally
19
* we call a special __do_div64 helper with completely non standard
20
* calling convention for arguments and results (beware).
21
*/
22
23
#ifdef __ARMEB__
24
#define __xh "r0"
25
#define __xl "r1"
26
#else
27
#define __xl "r0"
28
#define __xh "r1"
29
#endif
30
31
#define __do_div_asm(n, base) \
32
({ \
33
register unsigned int __base asm("r4") = base; \
34
register unsigned long long __n asm("r0") = n; \
35
register unsigned long long __res asm("r2"); \
36
register unsigned int __rem asm(__xh); \
37
asm( __asmeq("%0", __xh) \
38
__asmeq("%1", "r2") \
39
__asmeq("%2", "r0") \
40
__asmeq("%3", "r4") \
41
"bl __do_div64" \
42
: "=r" (__rem), "=r" (__res) \
43
: "r" (__n), "r" (__base) \
44
: "ip", "lr", "cc"); \
45
n = __res; \
46
__rem; \
47
})
48
49
#if __GNUC__ < 4
50
51
/*
52
* gcc versions earlier than 4.0 are simply too problematic for the
53
* optimized implementation below. First there is gcc PR 15089 that
54
* tend to trig on more complex constructs, spurious .global __udivsi3
55
* are inserted even if none of those symbols are referenced in the
56
* generated code, and those gcc versions are not able to do constant
57
* propagation on long long values anyway.
58
*/
59
#define do_div(n, base) __do_div_asm(n, base)
60
61
#elif __GNUC__ >= 4
62
63
#include <asm/bug.h>
64
65
/*
66
* If the divisor happens to be constant, we determine the appropriate
67
* inverse at compile time to turn the division into a few inline
68
* multiplications instead which is much faster. And yet only if compiling
69
* for ARMv4 or higher (we need umull/umlal) and if the gcc version is
70
* sufficiently recent to perform proper long long constant propagation.
71
* (It is unfortunate that gcc doesn't perform all this internally.)
72
*/
73
#define do_div(n, base) \
74
({ \
75
unsigned int __r, __b = (base); \
76
if (!__builtin_constant_p(__b) || __b == 0 || \
77
(__LINUX_ARM_ARCH__ < 4 && (__b & (__b - 1)) != 0)) { \
78
/* non-constant divisor (or zero): slow path */ \
79
__r = __do_div_asm(n, __b); \
80
} else if ((__b & (__b - 1)) == 0) { \
81
/* Trivial: __b is constant and a power of 2 */ \
82
/* gcc does the right thing with this code. */ \
83
__r = n; \
84
__r &= (__b - 1); \
85
n /= __b; \
86
} else { \
87
/* Multiply by inverse of __b: n/b = n*(p/b)/p */ \
88
/* We rely on the fact that most of this code gets */ \
89
/* optimized away at compile time due to constant */ \
90
/* propagation and only a couple inline assembly */ \
91
/* instructions should remain. Better avoid any */ \
92
/* code construct that might prevent that. */ \
93
unsigned long long __res, __x, __t, __m, __n = n; \
94
unsigned int __c, __p, __z = 0; \
95
/* preserve low part of n for reminder computation */ \
96
__r = __n; \
97
/* determine number of bits to represent __b */ \
98
__p = 1 << __div64_fls(__b); \
99
/* compute __m = ((__p << 64) + __b - 1) / __b */ \
100
__m = (~0ULL / __b) * __p; \
101
__m += (((~0ULL % __b + 1) * __p) + __b - 1) / __b; \
102
/* compute __res = __m*(~0ULL/__b*__b-1)/(__p << 64) */ \
103
__x = ~0ULL / __b * __b - 1; \
104
__res = (__m & 0xffffffff) * (__x & 0xffffffff); \
105
__res >>= 32; \
106
__res += (__m & 0xffffffff) * (__x >> 32); \
107
__t = __res; \
108
__res += (__x & 0xffffffff) * (__m >> 32); \
109
__t = (__res < __t) ? (1ULL << 32) : 0; \
110
__res = (__res >> 32) + __t; \
111
__res += (__m >> 32) * (__x >> 32); \
112
__res /= __p; \
113
/* Now sanitize and optimize what we've got. */ \
114
if (~0ULL % (__b / (__b & -__b)) == 0) { \
115
/* those cases can be simplified with: */ \
116
__n /= (__b & -__b); \
117
__m = ~0ULL / (__b / (__b & -__b)); \
118
__p = 1; \
119
__c = 1; \
120
} else if (__res != __x / __b) { \
121
/* We can't get away without a correction */ \
122
/* to compensate for bit truncation errors. */ \
123
/* To avoid it we'd need an additional bit */ \
124
/* to represent __m which would overflow it. */ \
125
/* Instead we do m=p/b and n/b=(n*m+m)/p. */ \
126
__c = 1; \
127
/* Compute __m = (__p << 64) / __b */ \
128
__m = (~0ULL / __b) * __p; \
129
__m += ((~0ULL % __b + 1) * __p) / __b; \
130
} else { \
131
/* Reduce __m/__p, and try to clear bit 31 */ \
132
/* of __m when possible otherwise that'll */ \
133
/* need extra overflow handling later. */ \
134
unsigned int __bits = -(__m & -__m); \
135
__bits |= __m >> 32; \
136
__bits = (~__bits) << 1; \
137
/* If __bits == 0 then setting bit 31 is */ \
138
/* unavoidable. Simply apply the maximum */ \
139
/* possible reduction in that case. */ \
140
/* Otherwise the MSB of __bits indicates the */ \
141
/* best reduction we should apply. */ \
142
if (!__bits) { \
143
__p /= (__m & -__m); \
144
__m /= (__m & -__m); \
145
} else { \
146
__p >>= __div64_fls(__bits); \
147
__m >>= __div64_fls(__bits); \
148
} \
149
/* No correction needed. */ \
150
__c = 0; \
151
} \
152
/* Now we have a combination of 2 conditions: */ \
153
/* 1) whether or not we need a correction (__c), and */ \
154
/* 2) whether or not there might be an overflow in */ \
155
/* the cross product (__m & ((1<<63) | (1<<31))) */ \
156
/* Select the best insn combination to perform the */ \
157
/* actual __m * __n / (__p << 64) operation. */ \
158
if (!__c) { \
159
asm ( "umull %Q0, %R0, %1, %Q2\n\t" \
160
"mov %Q0, #0" \
161
: "=&r" (__res) \
162
: "r" (__m), "r" (__n) \
163
: "cc" ); \
164
} else if (!(__m & ((1ULL << 63) | (1ULL << 31)))) { \
165
__res = __m; \
166
asm ( "umlal %Q0, %R0, %Q1, %Q2\n\t" \
167
"mov %Q0, #0" \
168
: "+&r" (__res) \
169
: "r" (__m), "r" (__n) \
170
: "cc" ); \
171
} else { \
172
asm ( "umull %Q0, %R0, %Q1, %Q2\n\t" \
173
"cmn %Q0, %Q1\n\t" \
174
"adcs %R0, %R0, %R1\n\t" \
175
"adc %Q0, %3, #0" \
176
: "=&r" (__res) \
177
: "r" (__m), "r" (__n), "r" (__z) \
178
: "cc" ); \
179
} \
180
if (!(__m & ((1ULL << 63) | (1ULL << 31)))) { \
181
asm ( "umlal %R0, %Q0, %R1, %Q2\n\t" \
182
"umlal %R0, %Q0, %Q1, %R2\n\t" \
183
"mov %R0, #0\n\t" \
184
"umlal %Q0, %R0, %R1, %R2" \
185
: "+&r" (__res) \
186
: "r" (__m), "r" (__n) \
187
: "cc" ); \
188
} else { \
189
asm ( "umlal %R0, %Q0, %R2, %Q3\n\t" \
190
"umlal %R0, %1, %Q2, %R3\n\t" \
191
"mov %R0, #0\n\t" \
192
"adds %Q0, %1, %Q0\n\t" \
193
"adc %R0, %R0, #0\n\t" \
194
"umlal %Q0, %R0, %R2, %R3" \
195
: "+&r" (__res), "+&r" (__z) \
196
: "r" (__m), "r" (__n) \
197
: "cc" ); \
198
} \
199
__res /= __p; \
200
/* The reminder can be computed with 32-bit regs */ \
201
/* only, and gcc is good at that. */ \
202
{ \
203
unsigned int __res0 = __res; \
204
unsigned int __b0 = __b; \
205
__r -= __res0 * __b0; \
206
} \
207
/* BUG_ON(__r >= __b || __res * __b + __r != n); */ \
208
n = __res; \
209
} \
210
__r; \
211
})
212
213
/* our own fls implementation to make sure constant propagation is fine */
214
#define __div64_fls(bits) \
215
({ \
216
unsigned int __left = (bits), __nr = 0; \
217
if (__left & 0xffff0000) __nr += 16, __left >>= 16; \
218
if (__left & 0x0000ff00) __nr += 8, __left >>= 8; \
219
if (__left & 0x000000f0) __nr += 4, __left >>= 4; \
220
if (__left & 0x0000000c) __nr += 2, __left >>= 2; \
221
if (__left & 0x00000002) __nr += 1; \
222
__nr; \
223
})
224
225
#endif
226
227
#endif
228
229