Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/arm/kernel/ecard.c
10817 views
1
/*
2
* linux/arch/arm/kernel/ecard.c
3
*
4
* Copyright 1995-2001 Russell King
5
*
6
* This program is free software; you can redistribute it and/or modify
7
* it under the terms of the GNU General Public License version 2 as
8
* published by the Free Software Foundation.
9
*
10
* Find all installed expansion cards, and handle interrupts from them.
11
*
12
* Created from information from Acorns RiscOS3 PRMs
13
*
14
* 08-Dec-1996 RMK Added code for the 9'th expansion card - the ether
15
* podule slot.
16
* 06-May-1997 RMK Added blacklist for cards whose loader doesn't work.
17
* 12-Sep-1997 RMK Created new handling of interrupt enables/disables
18
* - cards can now register their own routine to control
19
* interrupts (recommended).
20
* 29-Sep-1997 RMK Expansion card interrupt hardware not being re-enabled
21
* on reset from Linux. (Caused cards not to respond
22
* under RiscOS without hard reset).
23
* 15-Feb-1998 RMK Added DMA support
24
* 12-Sep-1998 RMK Added EASI support
25
* 10-Jan-1999 RMK Run loaders in a simulated RISC OS environment.
26
* 17-Apr-1999 RMK Support for EASI Type C cycles.
27
*/
28
#define ECARD_C
29
30
#include <linux/module.h>
31
#include <linux/kernel.h>
32
#include <linux/types.h>
33
#include <linux/sched.h>
34
#include <linux/interrupt.h>
35
#include <linux/completion.h>
36
#include <linux/reboot.h>
37
#include <linux/mm.h>
38
#include <linux/slab.h>
39
#include <linux/proc_fs.h>
40
#include <linux/seq_file.h>
41
#include <linux/device.h>
42
#include <linux/init.h>
43
#include <linux/mutex.h>
44
#include <linux/kthread.h>
45
#include <linux/io.h>
46
47
#include <asm/dma.h>
48
#include <asm/ecard.h>
49
#include <mach/hardware.h>
50
#include <asm/irq.h>
51
#include <asm/mmu_context.h>
52
#include <asm/mach/irq.h>
53
#include <asm/tlbflush.h>
54
55
#include "ecard.h"
56
57
#ifndef CONFIG_ARCH_RPC
58
#define HAVE_EXPMASK
59
#endif
60
61
struct ecard_request {
62
void (*fn)(struct ecard_request *);
63
ecard_t *ec;
64
unsigned int address;
65
unsigned int length;
66
unsigned int use_loader;
67
void *buffer;
68
struct completion *complete;
69
};
70
71
struct expcard_blacklist {
72
unsigned short manufacturer;
73
unsigned short product;
74
const char *type;
75
};
76
77
static ecard_t *cards;
78
static ecard_t *slot_to_expcard[MAX_ECARDS];
79
static unsigned int ectcr;
80
#ifdef HAS_EXPMASK
81
static unsigned int have_expmask;
82
#endif
83
84
/* List of descriptions of cards which don't have an extended
85
* identification, or chunk directories containing a description.
86
*/
87
static struct expcard_blacklist __initdata blacklist[] = {
88
{ MANU_ACORN, PROD_ACORN_ETHER1, "Acorn Ether1" }
89
};
90
91
asmlinkage extern int
92
ecard_loader_reset(unsigned long base, loader_t loader);
93
asmlinkage extern int
94
ecard_loader_read(int off, unsigned long base, loader_t loader);
95
96
static inline unsigned short ecard_getu16(unsigned char *v)
97
{
98
return v[0] | v[1] << 8;
99
}
100
101
static inline signed long ecard_gets24(unsigned char *v)
102
{
103
return v[0] | v[1] << 8 | v[2] << 16 | ((v[2] & 0x80) ? 0xff000000 : 0);
104
}
105
106
static inline ecard_t *slot_to_ecard(unsigned int slot)
107
{
108
return slot < MAX_ECARDS ? slot_to_expcard[slot] : NULL;
109
}
110
111
/* ===================== Expansion card daemon ======================== */
112
/*
113
* Since the loader programs on the expansion cards need to be run
114
* in a specific environment, create a separate task with this
115
* environment up, and pass requests to this task as and when we
116
* need to.
117
*
118
* This should allow 99% of loaders to be called from Linux.
119
*
120
* From a security standpoint, we trust the card vendors. This
121
* may be a misplaced trust.
122
*/
123
static void ecard_task_reset(struct ecard_request *req)
124
{
125
struct expansion_card *ec = req->ec;
126
struct resource *res;
127
128
res = ec->slot_no == 8
129
? &ec->resource[ECARD_RES_MEMC]
130
: ec->easi
131
? &ec->resource[ECARD_RES_EASI]
132
: &ec->resource[ECARD_RES_IOCSYNC];
133
134
ecard_loader_reset(res->start, ec->loader);
135
}
136
137
static void ecard_task_readbytes(struct ecard_request *req)
138
{
139
struct expansion_card *ec = req->ec;
140
unsigned char *buf = req->buffer;
141
unsigned int len = req->length;
142
unsigned int off = req->address;
143
144
if (ec->slot_no == 8) {
145
void __iomem *base = (void __iomem *)
146
ec->resource[ECARD_RES_MEMC].start;
147
148
/*
149
* The card maintains an index which increments the address
150
* into a 4096-byte page on each access. We need to keep
151
* track of the counter.
152
*/
153
static unsigned int index;
154
unsigned int page;
155
156
page = (off >> 12) * 4;
157
if (page > 256 * 4)
158
return;
159
160
off &= 4095;
161
162
/*
163
* If we are reading offset 0, or our current index is
164
* greater than the offset, reset the hardware index counter.
165
*/
166
if (off == 0 || index > off) {
167
writeb(0, base);
168
index = 0;
169
}
170
171
/*
172
* Increment the hardware index counter until we get to the
173
* required offset. The read bytes are discarded.
174
*/
175
while (index < off) {
176
readb(base + page);
177
index += 1;
178
}
179
180
while (len--) {
181
*buf++ = readb(base + page);
182
index += 1;
183
}
184
} else {
185
unsigned long base = (ec->easi
186
? &ec->resource[ECARD_RES_EASI]
187
: &ec->resource[ECARD_RES_IOCSYNC])->start;
188
void __iomem *pbase = (void __iomem *)base;
189
190
if (!req->use_loader || !ec->loader) {
191
off *= 4;
192
while (len--) {
193
*buf++ = readb(pbase + off);
194
off += 4;
195
}
196
} else {
197
while(len--) {
198
/*
199
* The following is required by some
200
* expansion card loader programs.
201
*/
202
*(unsigned long *)0x108 = 0;
203
*buf++ = ecard_loader_read(off++, base,
204
ec->loader);
205
}
206
}
207
}
208
209
}
210
211
static DECLARE_WAIT_QUEUE_HEAD(ecard_wait);
212
static struct ecard_request *ecard_req;
213
static DEFINE_MUTEX(ecard_mutex);
214
215
/*
216
* Set up the expansion card daemon's page tables.
217
*/
218
static void ecard_init_pgtables(struct mm_struct *mm)
219
{
220
struct vm_area_struct vma;
221
222
/* We want to set up the page tables for the following mapping:
223
* Virtual Physical
224
* 0x03000000 0x03000000
225
* 0x03010000 unmapped
226
* 0x03210000 0x03210000
227
* 0x03400000 unmapped
228
* 0x08000000 0x08000000
229
* 0x10000000 unmapped
230
*
231
* FIXME: we don't follow this 100% yet.
232
*/
233
pgd_t *src_pgd, *dst_pgd;
234
235
src_pgd = pgd_offset(mm, (unsigned long)IO_BASE);
236
dst_pgd = pgd_offset(mm, IO_START);
237
238
memcpy(dst_pgd, src_pgd, sizeof(pgd_t) * (IO_SIZE / PGDIR_SIZE));
239
240
src_pgd = pgd_offset(mm, EASI_BASE);
241
dst_pgd = pgd_offset(mm, EASI_START);
242
243
memcpy(dst_pgd, src_pgd, sizeof(pgd_t) * (EASI_SIZE / PGDIR_SIZE));
244
245
vma.vm_mm = mm;
246
247
flush_tlb_range(&vma, IO_START, IO_START + IO_SIZE);
248
flush_tlb_range(&vma, EASI_START, EASI_START + EASI_SIZE);
249
}
250
251
static int ecard_init_mm(void)
252
{
253
struct mm_struct * mm = mm_alloc();
254
struct mm_struct *active_mm = current->active_mm;
255
256
if (!mm)
257
return -ENOMEM;
258
259
current->mm = mm;
260
current->active_mm = mm;
261
activate_mm(active_mm, mm);
262
mmdrop(active_mm);
263
ecard_init_pgtables(mm);
264
return 0;
265
}
266
267
static int
268
ecard_task(void * unused)
269
{
270
/*
271
* Allocate a mm. We're not a lazy-TLB kernel task since we need
272
* to set page table entries where the user space would be. Note
273
* that this also creates the page tables. Failure is not an
274
* option here.
275
*/
276
if (ecard_init_mm())
277
panic("kecardd: unable to alloc mm\n");
278
279
while (1) {
280
struct ecard_request *req;
281
282
wait_event_interruptible(ecard_wait, ecard_req != NULL);
283
284
req = xchg(&ecard_req, NULL);
285
if (req != NULL) {
286
req->fn(req);
287
complete(req->complete);
288
}
289
}
290
}
291
292
/*
293
* Wake the expansion card daemon to action our request.
294
*
295
* FIXME: The test here is not sufficient to detect if the
296
* kcardd is running.
297
*/
298
static void ecard_call(struct ecard_request *req)
299
{
300
DECLARE_COMPLETION_ONSTACK(completion);
301
302
req->complete = &completion;
303
304
mutex_lock(&ecard_mutex);
305
ecard_req = req;
306
wake_up(&ecard_wait);
307
308
/*
309
* Now wait for kecardd to run.
310
*/
311
wait_for_completion(&completion);
312
mutex_unlock(&ecard_mutex);
313
}
314
315
/* ======================= Mid-level card control ===================== */
316
317
static void
318
ecard_readbytes(void *addr, ecard_t *ec, int off, int len, int useld)
319
{
320
struct ecard_request req;
321
322
req.fn = ecard_task_readbytes;
323
req.ec = ec;
324
req.address = off;
325
req.length = len;
326
req.use_loader = useld;
327
req.buffer = addr;
328
329
ecard_call(&req);
330
}
331
332
int ecard_readchunk(struct in_chunk_dir *cd, ecard_t *ec, int id, int num)
333
{
334
struct ex_chunk_dir excd;
335
int index = 16;
336
int useld = 0;
337
338
if (!ec->cid.cd)
339
return 0;
340
341
while(1) {
342
ecard_readbytes(&excd, ec, index, 8, useld);
343
index += 8;
344
if (c_id(&excd) == 0) {
345
if (!useld && ec->loader) {
346
useld = 1;
347
index = 0;
348
continue;
349
}
350
return 0;
351
}
352
if (c_id(&excd) == 0xf0) { /* link */
353
index = c_start(&excd);
354
continue;
355
}
356
if (c_id(&excd) == 0x80) { /* loader */
357
if (!ec->loader) {
358
ec->loader = kmalloc(c_len(&excd),
359
GFP_KERNEL);
360
if (ec->loader)
361
ecard_readbytes(ec->loader, ec,
362
(int)c_start(&excd),
363
c_len(&excd), useld);
364
else
365
return 0;
366
}
367
continue;
368
}
369
if (c_id(&excd) == id && num-- == 0)
370
break;
371
}
372
373
if (c_id(&excd) & 0x80) {
374
switch (c_id(&excd) & 0x70) {
375
case 0x70:
376
ecard_readbytes((unsigned char *)excd.d.string, ec,
377
(int)c_start(&excd), c_len(&excd),
378
useld);
379
break;
380
case 0x00:
381
break;
382
}
383
}
384
cd->start_offset = c_start(&excd);
385
memcpy(cd->d.string, excd.d.string, 256);
386
return 1;
387
}
388
389
/* ======================= Interrupt control ============================ */
390
391
static void ecard_def_irq_enable(ecard_t *ec, int irqnr)
392
{
393
#ifdef HAS_EXPMASK
394
if (irqnr < 4 && have_expmask) {
395
have_expmask |= 1 << irqnr;
396
__raw_writeb(have_expmask, EXPMASK_ENABLE);
397
}
398
#endif
399
}
400
401
static void ecard_def_irq_disable(ecard_t *ec, int irqnr)
402
{
403
#ifdef HAS_EXPMASK
404
if (irqnr < 4 && have_expmask) {
405
have_expmask &= ~(1 << irqnr);
406
__raw_writeb(have_expmask, EXPMASK_ENABLE);
407
}
408
#endif
409
}
410
411
static int ecard_def_irq_pending(ecard_t *ec)
412
{
413
return !ec->irqmask || readb(ec->irqaddr) & ec->irqmask;
414
}
415
416
static void ecard_def_fiq_enable(ecard_t *ec, int fiqnr)
417
{
418
panic("ecard_def_fiq_enable called - impossible");
419
}
420
421
static void ecard_def_fiq_disable(ecard_t *ec, int fiqnr)
422
{
423
panic("ecard_def_fiq_disable called - impossible");
424
}
425
426
static int ecard_def_fiq_pending(ecard_t *ec)
427
{
428
return !ec->fiqmask || readb(ec->fiqaddr) & ec->fiqmask;
429
}
430
431
static expansioncard_ops_t ecard_default_ops = {
432
ecard_def_irq_enable,
433
ecard_def_irq_disable,
434
ecard_def_irq_pending,
435
ecard_def_fiq_enable,
436
ecard_def_fiq_disable,
437
ecard_def_fiq_pending
438
};
439
440
/*
441
* Enable and disable interrupts from expansion cards.
442
* (interrupts are disabled for these functions).
443
*
444
* They are not meant to be called directly, but via enable/disable_irq.
445
*/
446
static void ecard_irq_unmask(struct irq_data *d)
447
{
448
ecard_t *ec = slot_to_ecard(d->irq - 32);
449
450
if (ec) {
451
if (!ec->ops)
452
ec->ops = &ecard_default_ops;
453
454
if (ec->claimed && ec->ops->irqenable)
455
ec->ops->irqenable(ec, d->irq);
456
else
457
printk(KERN_ERR "ecard: rejecting request to "
458
"enable IRQs for %d\n", d->irq);
459
}
460
}
461
462
static void ecard_irq_mask(struct irq_data *d)
463
{
464
ecard_t *ec = slot_to_ecard(d->irq - 32);
465
466
if (ec) {
467
if (!ec->ops)
468
ec->ops = &ecard_default_ops;
469
470
if (ec->ops && ec->ops->irqdisable)
471
ec->ops->irqdisable(ec, d->irq);
472
}
473
}
474
475
static struct irq_chip ecard_chip = {
476
.name = "ECARD",
477
.irq_ack = ecard_irq_mask,
478
.irq_mask = ecard_irq_mask,
479
.irq_unmask = ecard_irq_unmask,
480
};
481
482
void ecard_enablefiq(unsigned int fiqnr)
483
{
484
ecard_t *ec = slot_to_ecard(fiqnr);
485
486
if (ec) {
487
if (!ec->ops)
488
ec->ops = &ecard_default_ops;
489
490
if (ec->claimed && ec->ops->fiqenable)
491
ec->ops->fiqenable(ec, fiqnr);
492
else
493
printk(KERN_ERR "ecard: rejecting request to "
494
"enable FIQs for %d\n", fiqnr);
495
}
496
}
497
498
void ecard_disablefiq(unsigned int fiqnr)
499
{
500
ecard_t *ec = slot_to_ecard(fiqnr);
501
502
if (ec) {
503
if (!ec->ops)
504
ec->ops = &ecard_default_ops;
505
506
if (ec->ops->fiqdisable)
507
ec->ops->fiqdisable(ec, fiqnr);
508
}
509
}
510
511
static void ecard_dump_irq_state(void)
512
{
513
ecard_t *ec;
514
515
printk("Expansion card IRQ state:\n");
516
517
for (ec = cards; ec; ec = ec->next) {
518
if (ec->slot_no == 8)
519
continue;
520
521
printk(" %d: %sclaimed, ",
522
ec->slot_no, ec->claimed ? "" : "not ");
523
524
if (ec->ops && ec->ops->irqpending &&
525
ec->ops != &ecard_default_ops)
526
printk("irq %spending\n",
527
ec->ops->irqpending(ec) ? "" : "not ");
528
else
529
printk("irqaddr %p, mask = %02X, status = %02X\n",
530
ec->irqaddr, ec->irqmask, readb(ec->irqaddr));
531
}
532
}
533
534
static void ecard_check_lockup(struct irq_desc *desc)
535
{
536
static unsigned long last;
537
static int lockup;
538
539
/*
540
* If the timer interrupt has not run since the last million
541
* unrecognised expansion card interrupts, then there is
542
* something seriously wrong. Disable the expansion card
543
* interrupts so at least we can continue.
544
*
545
* Maybe we ought to start a timer to re-enable them some time
546
* later?
547
*/
548
if (last == jiffies) {
549
lockup += 1;
550
if (lockup > 1000000) {
551
printk(KERN_ERR "\nInterrupt lockup detected - "
552
"disabling all expansion card interrupts\n");
553
554
desc->irq_data.chip->irq_mask(&desc->irq_data);
555
ecard_dump_irq_state();
556
}
557
} else
558
lockup = 0;
559
560
/*
561
* If we did not recognise the source of this interrupt,
562
* warn the user, but don't flood the user with these messages.
563
*/
564
if (!last || time_after(jiffies, last + 5*HZ)) {
565
last = jiffies;
566
printk(KERN_WARNING "Unrecognised interrupt from backplane\n");
567
ecard_dump_irq_state();
568
}
569
}
570
571
static void
572
ecard_irq_handler(unsigned int irq, struct irq_desc *desc)
573
{
574
ecard_t *ec;
575
int called = 0;
576
577
desc->irq_data.chip->irq_mask(&desc->irq_data);
578
for (ec = cards; ec; ec = ec->next) {
579
int pending;
580
581
if (!ec->claimed || ec->irq == NO_IRQ || ec->slot_no == 8)
582
continue;
583
584
if (ec->ops && ec->ops->irqpending)
585
pending = ec->ops->irqpending(ec);
586
else
587
pending = ecard_default_ops.irqpending(ec);
588
589
if (pending) {
590
generic_handle_irq(ec->irq);
591
called ++;
592
}
593
}
594
desc->irq_data.chip->irq_unmask(&desc->irq_data);
595
596
if (called == 0)
597
ecard_check_lockup(desc);
598
}
599
600
#ifdef HAS_EXPMASK
601
static unsigned char priority_masks[] =
602
{
603
0xf0, 0xf1, 0xf3, 0xf7, 0xff, 0xff, 0xff, 0xff
604
};
605
606
static unsigned char first_set[] =
607
{
608
0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00,
609
0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00
610
};
611
612
static void
613
ecard_irqexp_handler(unsigned int irq, struct irq_desc *desc)
614
{
615
const unsigned int statusmask = 15;
616
unsigned int status;
617
618
status = __raw_readb(EXPMASK_STATUS) & statusmask;
619
if (status) {
620
unsigned int slot = first_set[status];
621
ecard_t *ec = slot_to_ecard(slot);
622
623
if (ec->claimed) {
624
/*
625
* this ugly code is so that we can operate a
626
* prioritorising system:
627
*
628
* Card 0 highest priority
629
* Card 1
630
* Card 2
631
* Card 3 lowest priority
632
*
633
* Serial cards should go in 0/1, ethernet/scsi in 2/3
634
* otherwise you will lose serial data at high speeds!
635
*/
636
generic_handle_irq(ec->irq);
637
} else {
638
printk(KERN_WARNING "card%d: interrupt from unclaimed "
639
"card???\n", slot);
640
have_expmask &= ~(1 << slot);
641
__raw_writeb(have_expmask, EXPMASK_ENABLE);
642
}
643
} else
644
printk(KERN_WARNING "Wild interrupt from backplane (masks)\n");
645
}
646
647
static int __init ecard_probeirqhw(void)
648
{
649
ecard_t *ec;
650
int found;
651
652
__raw_writeb(0x00, EXPMASK_ENABLE);
653
__raw_writeb(0xff, EXPMASK_STATUS);
654
found = (__raw_readb(EXPMASK_STATUS) & 15) == 0;
655
__raw_writeb(0xff, EXPMASK_ENABLE);
656
657
if (found) {
658
printk(KERN_DEBUG "Expansion card interrupt "
659
"management hardware found\n");
660
661
/* for each card present, set a bit to '1' */
662
have_expmask = 0x80000000;
663
664
for (ec = cards; ec; ec = ec->next)
665
have_expmask |= 1 << ec->slot_no;
666
667
__raw_writeb(have_expmask, EXPMASK_ENABLE);
668
}
669
670
return found;
671
}
672
#else
673
#define ecard_irqexp_handler NULL
674
#define ecard_probeirqhw() (0)
675
#endif
676
677
#ifndef IO_EC_MEMC8_BASE
678
#define IO_EC_MEMC8_BASE 0
679
#endif
680
681
static unsigned int __ecard_address(ecard_t *ec, card_type_t type, card_speed_t speed)
682
{
683
unsigned long address = 0;
684
int slot = ec->slot_no;
685
686
if (ec->slot_no == 8)
687
return IO_EC_MEMC8_BASE;
688
689
ectcr &= ~(1 << slot);
690
691
switch (type) {
692
case ECARD_MEMC:
693
if (slot < 4)
694
address = IO_EC_MEMC_BASE + (slot << 12);
695
break;
696
697
case ECARD_IOC:
698
if (slot < 4)
699
address = IO_EC_IOC_BASE + (slot << 12);
700
#ifdef IO_EC_IOC4_BASE
701
else
702
address = IO_EC_IOC4_BASE + ((slot - 4) << 12);
703
#endif
704
if (address)
705
address += speed << 17;
706
break;
707
708
#ifdef IO_EC_EASI_BASE
709
case ECARD_EASI:
710
address = IO_EC_EASI_BASE + (slot << 22);
711
if (speed == ECARD_FAST)
712
ectcr |= 1 << slot;
713
break;
714
#endif
715
default:
716
break;
717
}
718
719
#ifdef IOMD_ECTCR
720
iomd_writeb(ectcr, IOMD_ECTCR);
721
#endif
722
return address;
723
}
724
725
static int ecard_prints(struct seq_file *m, ecard_t *ec)
726
{
727
seq_printf(m, " %d: %s ", ec->slot_no, ec->easi ? "EASI" : " ");
728
729
if (ec->cid.id == 0) {
730
struct in_chunk_dir incd;
731
732
seq_printf(m, "[%04X:%04X] ",
733
ec->cid.manufacturer, ec->cid.product);
734
735
if (!ec->card_desc && ec->cid.cd &&
736
ecard_readchunk(&incd, ec, 0xf5, 0)) {
737
ec->card_desc = kmalloc(strlen(incd.d.string)+1, GFP_KERNEL);
738
739
if (ec->card_desc)
740
strcpy((char *)ec->card_desc, incd.d.string);
741
}
742
743
seq_printf(m, "%s\n", ec->card_desc ? ec->card_desc : "*unknown*");
744
} else
745
seq_printf(m, "Simple card %d\n", ec->cid.id);
746
747
return 0;
748
}
749
750
static int ecard_devices_proc_show(struct seq_file *m, void *v)
751
{
752
ecard_t *ec = cards;
753
754
while (ec) {
755
ecard_prints(m, ec);
756
ec = ec->next;
757
}
758
return 0;
759
}
760
761
static int ecard_devices_proc_open(struct inode *inode, struct file *file)
762
{
763
return single_open(file, ecard_devices_proc_show, NULL);
764
}
765
766
static const struct file_operations bus_ecard_proc_fops = {
767
.owner = THIS_MODULE,
768
.open = ecard_devices_proc_open,
769
.read = seq_read,
770
.llseek = seq_lseek,
771
.release = single_release,
772
};
773
774
static struct proc_dir_entry *proc_bus_ecard_dir = NULL;
775
776
static void ecard_proc_init(void)
777
{
778
proc_bus_ecard_dir = proc_mkdir("bus/ecard", NULL);
779
proc_create("devices", 0, proc_bus_ecard_dir, &bus_ecard_proc_fops);
780
}
781
782
#define ec_set_resource(ec,nr,st,sz) \
783
do { \
784
(ec)->resource[nr].name = dev_name(&ec->dev); \
785
(ec)->resource[nr].start = st; \
786
(ec)->resource[nr].end = (st) + (sz) - 1; \
787
(ec)->resource[nr].flags = IORESOURCE_MEM; \
788
} while (0)
789
790
static void __init ecard_free_card(struct expansion_card *ec)
791
{
792
int i;
793
794
for (i = 0; i < ECARD_NUM_RESOURCES; i++)
795
if (ec->resource[i].flags)
796
release_resource(&ec->resource[i]);
797
798
kfree(ec);
799
}
800
801
static struct expansion_card *__init ecard_alloc_card(int type, int slot)
802
{
803
struct expansion_card *ec;
804
unsigned long base;
805
int i;
806
807
ec = kzalloc(sizeof(ecard_t), GFP_KERNEL);
808
if (!ec) {
809
ec = ERR_PTR(-ENOMEM);
810
goto nomem;
811
}
812
813
ec->slot_no = slot;
814
ec->easi = type == ECARD_EASI;
815
ec->irq = NO_IRQ;
816
ec->fiq = NO_IRQ;
817
ec->dma = NO_DMA;
818
ec->ops = &ecard_default_ops;
819
820
dev_set_name(&ec->dev, "ecard%d", slot);
821
ec->dev.parent = NULL;
822
ec->dev.bus = &ecard_bus_type;
823
ec->dev.dma_mask = &ec->dma_mask;
824
ec->dma_mask = (u64)0xffffffff;
825
ec->dev.coherent_dma_mask = ec->dma_mask;
826
827
if (slot < 4) {
828
ec_set_resource(ec, ECARD_RES_MEMC,
829
PODSLOT_MEMC_BASE + (slot << 14),
830
PODSLOT_MEMC_SIZE);
831
base = PODSLOT_IOC0_BASE + (slot << 14);
832
} else
833
base = PODSLOT_IOC4_BASE + ((slot - 4) << 14);
834
835
#ifdef CONFIG_ARCH_RPC
836
if (slot < 8) {
837
ec_set_resource(ec, ECARD_RES_EASI,
838
PODSLOT_EASI_BASE + (slot << 24),
839
PODSLOT_EASI_SIZE);
840
}
841
842
if (slot == 8) {
843
ec_set_resource(ec, ECARD_RES_MEMC, NETSLOT_BASE, NETSLOT_SIZE);
844
} else
845
#endif
846
847
for (i = 0; i <= ECARD_RES_IOCSYNC - ECARD_RES_IOCSLOW; i++)
848
ec_set_resource(ec, i + ECARD_RES_IOCSLOW,
849
base + (i << 19), PODSLOT_IOC_SIZE);
850
851
for (i = 0; i < ECARD_NUM_RESOURCES; i++) {
852
if (ec->resource[i].flags &&
853
request_resource(&iomem_resource, &ec->resource[i])) {
854
dev_err(&ec->dev, "resource(s) not available\n");
855
ec->resource[i].end -= ec->resource[i].start;
856
ec->resource[i].start = 0;
857
ec->resource[i].flags = 0;
858
}
859
}
860
861
nomem:
862
return ec;
863
}
864
865
static ssize_t ecard_show_irq(struct device *dev, struct device_attribute *attr, char *buf)
866
{
867
struct expansion_card *ec = ECARD_DEV(dev);
868
return sprintf(buf, "%u\n", ec->irq);
869
}
870
871
static ssize_t ecard_show_dma(struct device *dev, struct device_attribute *attr, char *buf)
872
{
873
struct expansion_card *ec = ECARD_DEV(dev);
874
return sprintf(buf, "%u\n", ec->dma);
875
}
876
877
static ssize_t ecard_show_resources(struct device *dev, struct device_attribute *attr, char *buf)
878
{
879
struct expansion_card *ec = ECARD_DEV(dev);
880
char *str = buf;
881
int i;
882
883
for (i = 0; i < ECARD_NUM_RESOURCES; i++)
884
str += sprintf(str, "%08x %08x %08lx\n",
885
ec->resource[i].start,
886
ec->resource[i].end,
887
ec->resource[i].flags);
888
889
return str - buf;
890
}
891
892
static ssize_t ecard_show_vendor(struct device *dev, struct device_attribute *attr, char *buf)
893
{
894
struct expansion_card *ec = ECARD_DEV(dev);
895
return sprintf(buf, "%u\n", ec->cid.manufacturer);
896
}
897
898
static ssize_t ecard_show_device(struct device *dev, struct device_attribute *attr, char *buf)
899
{
900
struct expansion_card *ec = ECARD_DEV(dev);
901
return sprintf(buf, "%u\n", ec->cid.product);
902
}
903
904
static ssize_t ecard_show_type(struct device *dev, struct device_attribute *attr, char *buf)
905
{
906
struct expansion_card *ec = ECARD_DEV(dev);
907
return sprintf(buf, "%s\n", ec->easi ? "EASI" : "IOC");
908
}
909
910
static struct device_attribute ecard_dev_attrs[] = {
911
__ATTR(device, S_IRUGO, ecard_show_device, NULL),
912
__ATTR(dma, S_IRUGO, ecard_show_dma, NULL),
913
__ATTR(irq, S_IRUGO, ecard_show_irq, NULL),
914
__ATTR(resource, S_IRUGO, ecard_show_resources, NULL),
915
__ATTR(type, S_IRUGO, ecard_show_type, NULL),
916
__ATTR(vendor, S_IRUGO, ecard_show_vendor, NULL),
917
__ATTR_NULL,
918
};
919
920
921
int ecard_request_resources(struct expansion_card *ec)
922
{
923
int i, err = 0;
924
925
for (i = 0; i < ECARD_NUM_RESOURCES; i++) {
926
if (ecard_resource_end(ec, i) &&
927
!request_mem_region(ecard_resource_start(ec, i),
928
ecard_resource_len(ec, i),
929
ec->dev.driver->name)) {
930
err = -EBUSY;
931
break;
932
}
933
}
934
935
if (err) {
936
while (i--)
937
if (ecard_resource_end(ec, i))
938
release_mem_region(ecard_resource_start(ec, i),
939
ecard_resource_len(ec, i));
940
}
941
return err;
942
}
943
EXPORT_SYMBOL(ecard_request_resources);
944
945
void ecard_release_resources(struct expansion_card *ec)
946
{
947
int i;
948
949
for (i = 0; i < ECARD_NUM_RESOURCES; i++)
950
if (ecard_resource_end(ec, i))
951
release_mem_region(ecard_resource_start(ec, i),
952
ecard_resource_len(ec, i));
953
}
954
EXPORT_SYMBOL(ecard_release_resources);
955
956
void ecard_setirq(struct expansion_card *ec, const struct expansion_card_ops *ops, void *irq_data)
957
{
958
ec->irq_data = irq_data;
959
barrier();
960
ec->ops = ops;
961
}
962
EXPORT_SYMBOL(ecard_setirq);
963
964
void __iomem *ecardm_iomap(struct expansion_card *ec, unsigned int res,
965
unsigned long offset, unsigned long maxsize)
966
{
967
unsigned long start = ecard_resource_start(ec, res);
968
unsigned long end = ecard_resource_end(ec, res);
969
970
if (offset > (end - start))
971
return NULL;
972
973
start += offset;
974
if (maxsize && end - start > maxsize)
975
end = start + maxsize;
976
977
return devm_ioremap(&ec->dev, start, end - start);
978
}
979
EXPORT_SYMBOL(ecardm_iomap);
980
981
/*
982
* Probe for an expansion card.
983
*
984
* If bit 1 of the first byte of the card is set, then the
985
* card does not exist.
986
*/
987
static int __init
988
ecard_probe(int slot, card_type_t type)
989
{
990
ecard_t **ecp;
991
ecard_t *ec;
992
struct ex_ecid cid;
993
int i, rc;
994
995
ec = ecard_alloc_card(type, slot);
996
if (IS_ERR(ec)) {
997
rc = PTR_ERR(ec);
998
goto nomem;
999
}
1000
1001
rc = -ENODEV;
1002
if ((ec->podaddr = __ecard_address(ec, type, ECARD_SYNC)) == 0)
1003
goto nodev;
1004
1005
cid.r_zero = 1;
1006
ecard_readbytes(&cid, ec, 0, 16, 0);
1007
if (cid.r_zero)
1008
goto nodev;
1009
1010
ec->cid.id = cid.r_id;
1011
ec->cid.cd = cid.r_cd;
1012
ec->cid.is = cid.r_is;
1013
ec->cid.w = cid.r_w;
1014
ec->cid.manufacturer = ecard_getu16(cid.r_manu);
1015
ec->cid.product = ecard_getu16(cid.r_prod);
1016
ec->cid.country = cid.r_country;
1017
ec->cid.irqmask = cid.r_irqmask;
1018
ec->cid.irqoff = ecard_gets24(cid.r_irqoff);
1019
ec->cid.fiqmask = cid.r_fiqmask;
1020
ec->cid.fiqoff = ecard_gets24(cid.r_fiqoff);
1021
ec->fiqaddr =
1022
ec->irqaddr = (void __iomem *)ioaddr(ec->podaddr);
1023
1024
if (ec->cid.is) {
1025
ec->irqmask = ec->cid.irqmask;
1026
ec->irqaddr += ec->cid.irqoff;
1027
ec->fiqmask = ec->cid.fiqmask;
1028
ec->fiqaddr += ec->cid.fiqoff;
1029
} else {
1030
ec->irqmask = 1;
1031
ec->fiqmask = 4;
1032
}
1033
1034
for (i = 0; i < ARRAY_SIZE(blacklist); i++)
1035
if (blacklist[i].manufacturer == ec->cid.manufacturer &&
1036
blacklist[i].product == ec->cid.product) {
1037
ec->card_desc = blacklist[i].type;
1038
break;
1039
}
1040
1041
/*
1042
* hook the interrupt handlers
1043
*/
1044
if (slot < 8) {
1045
ec->irq = 32 + slot;
1046
irq_set_chip_and_handler(ec->irq, &ecard_chip,
1047
handle_level_irq);
1048
set_irq_flags(ec->irq, IRQF_VALID);
1049
}
1050
1051
#ifdef IO_EC_MEMC8_BASE
1052
if (slot == 8)
1053
ec->irq = 11;
1054
#endif
1055
#ifdef CONFIG_ARCH_RPC
1056
/* On RiscPC, only first two slots have DMA capability */
1057
if (slot < 2)
1058
ec->dma = 2 + slot;
1059
#endif
1060
1061
for (ecp = &cards; *ecp; ecp = &(*ecp)->next);
1062
1063
*ecp = ec;
1064
slot_to_expcard[slot] = ec;
1065
1066
device_register(&ec->dev);
1067
1068
return 0;
1069
1070
nodev:
1071
ecard_free_card(ec);
1072
nomem:
1073
return rc;
1074
}
1075
1076
/*
1077
* Initialise the expansion card system.
1078
* Locate all hardware - interrupt management and
1079
* actual cards.
1080
*/
1081
static int __init ecard_init(void)
1082
{
1083
struct task_struct *task;
1084
int slot, irqhw;
1085
1086
task = kthread_run(ecard_task, NULL, "kecardd");
1087
if (IS_ERR(task)) {
1088
printk(KERN_ERR "Ecard: unable to create kernel thread: %ld\n",
1089
PTR_ERR(task));
1090
return PTR_ERR(task);
1091
}
1092
1093
printk("Probing expansion cards\n");
1094
1095
for (slot = 0; slot < 8; slot ++) {
1096
if (ecard_probe(slot, ECARD_EASI) == -ENODEV)
1097
ecard_probe(slot, ECARD_IOC);
1098
}
1099
1100
#ifdef IO_EC_MEMC8_BASE
1101
ecard_probe(8, ECARD_IOC);
1102
#endif
1103
1104
irqhw = ecard_probeirqhw();
1105
1106
irq_set_chained_handler(IRQ_EXPANSIONCARD,
1107
irqhw ? ecard_irqexp_handler : ecard_irq_handler);
1108
1109
ecard_proc_init();
1110
1111
return 0;
1112
}
1113
1114
subsys_initcall(ecard_init);
1115
1116
/*
1117
* ECARD "bus"
1118
*/
1119
static const struct ecard_id *
1120
ecard_match_device(const struct ecard_id *ids, struct expansion_card *ec)
1121
{
1122
int i;
1123
1124
for (i = 0; ids[i].manufacturer != 65535; i++)
1125
if (ec->cid.manufacturer == ids[i].manufacturer &&
1126
ec->cid.product == ids[i].product)
1127
return ids + i;
1128
1129
return NULL;
1130
}
1131
1132
static int ecard_drv_probe(struct device *dev)
1133
{
1134
struct expansion_card *ec = ECARD_DEV(dev);
1135
struct ecard_driver *drv = ECARD_DRV(dev->driver);
1136
const struct ecard_id *id;
1137
int ret;
1138
1139
id = ecard_match_device(drv->id_table, ec);
1140
1141
ec->claimed = 1;
1142
ret = drv->probe(ec, id);
1143
if (ret)
1144
ec->claimed = 0;
1145
return ret;
1146
}
1147
1148
static int ecard_drv_remove(struct device *dev)
1149
{
1150
struct expansion_card *ec = ECARD_DEV(dev);
1151
struct ecard_driver *drv = ECARD_DRV(dev->driver);
1152
1153
drv->remove(ec);
1154
ec->claimed = 0;
1155
1156
/*
1157
* Restore the default operations. We ensure that the
1158
* ops are set before we change the data.
1159
*/
1160
ec->ops = &ecard_default_ops;
1161
barrier();
1162
ec->irq_data = NULL;
1163
1164
return 0;
1165
}
1166
1167
/*
1168
* Before rebooting, we must make sure that the expansion card is in a
1169
* sensible state, so it can be re-detected. This means that the first
1170
* page of the ROM must be visible. We call the expansion cards reset
1171
* handler, if any.
1172
*/
1173
static void ecard_drv_shutdown(struct device *dev)
1174
{
1175
struct expansion_card *ec = ECARD_DEV(dev);
1176
struct ecard_driver *drv = ECARD_DRV(dev->driver);
1177
struct ecard_request req;
1178
1179
if (dev->driver) {
1180
if (drv->shutdown)
1181
drv->shutdown(ec);
1182
ec->claimed = 0;
1183
}
1184
1185
/*
1186
* If this card has a loader, call the reset handler.
1187
*/
1188
if (ec->loader) {
1189
req.fn = ecard_task_reset;
1190
req.ec = ec;
1191
ecard_call(&req);
1192
}
1193
}
1194
1195
int ecard_register_driver(struct ecard_driver *drv)
1196
{
1197
drv->drv.bus = &ecard_bus_type;
1198
1199
return driver_register(&drv->drv);
1200
}
1201
1202
void ecard_remove_driver(struct ecard_driver *drv)
1203
{
1204
driver_unregister(&drv->drv);
1205
}
1206
1207
static int ecard_match(struct device *_dev, struct device_driver *_drv)
1208
{
1209
struct expansion_card *ec = ECARD_DEV(_dev);
1210
struct ecard_driver *drv = ECARD_DRV(_drv);
1211
int ret;
1212
1213
if (drv->id_table) {
1214
ret = ecard_match_device(drv->id_table, ec) != NULL;
1215
} else {
1216
ret = ec->cid.id == drv->id;
1217
}
1218
1219
return ret;
1220
}
1221
1222
struct bus_type ecard_bus_type = {
1223
.name = "ecard",
1224
.dev_attrs = ecard_dev_attrs,
1225
.match = ecard_match,
1226
.probe = ecard_drv_probe,
1227
.remove = ecard_drv_remove,
1228
.shutdown = ecard_drv_shutdown,
1229
};
1230
1231
static int ecard_bus_init(void)
1232
{
1233
return bus_register(&ecard_bus_type);
1234
}
1235
1236
postcore_initcall(ecard_bus_init);
1237
1238
EXPORT_SYMBOL(ecard_readchunk);
1239
EXPORT_SYMBOL(ecard_register_driver);
1240
EXPORT_SYMBOL(ecard_remove_driver);
1241
EXPORT_SYMBOL(ecard_bus_type);
1242
1243