Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/arm/kernel/kprobes.c
10817 views
1
/*
2
* arch/arm/kernel/kprobes.c
3
*
4
* Kprobes on ARM
5
*
6
* Abhishek Sagar <[email protected]>
7
* Copyright (C) 2006, 2007 Motorola Inc.
8
*
9
* Nicolas Pitre <[email protected]>
10
* Copyright (C) 2007 Marvell Ltd.
11
*
12
* This program is free software; you can redistribute it and/or modify
13
* it under the terms of the GNU General Public License version 2 as
14
* published by the Free Software Foundation.
15
*
16
* This program is distributed in the hope that it will be useful,
17
* but WITHOUT ANY WARRANTY; without even the implied warranty of
18
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19
* General Public License for more details.
20
*/
21
22
#include <linux/kernel.h>
23
#include <linux/kprobes.h>
24
#include <linux/module.h>
25
#include <linux/slab.h>
26
#include <linux/stop_machine.h>
27
#include <linux/stringify.h>
28
#include <asm/traps.h>
29
#include <asm/cacheflush.h>
30
31
#define MIN_STACK_SIZE(addr) \
32
min((unsigned long)MAX_STACK_SIZE, \
33
(unsigned long)current_thread_info() + THREAD_START_SP - (addr))
34
35
#define flush_insns(addr, cnt) \
36
flush_icache_range((unsigned long)(addr), \
37
(unsigned long)(addr) + \
38
sizeof(kprobe_opcode_t) * (cnt))
39
40
/* Used as a marker in ARM_pc to note when we're in a jprobe. */
41
#define JPROBE_MAGIC_ADDR 0xffffffff
42
43
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
44
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
45
46
47
int __kprobes arch_prepare_kprobe(struct kprobe *p)
48
{
49
kprobe_opcode_t insn;
50
kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
51
unsigned long addr = (unsigned long)p->addr;
52
int is;
53
54
if (addr & 0x3 || in_exception_text(addr))
55
return -EINVAL;
56
57
insn = *p->addr;
58
p->opcode = insn;
59
p->ainsn.insn = tmp_insn;
60
61
switch (arm_kprobe_decode_insn(insn, &p->ainsn)) {
62
case INSN_REJECTED: /* not supported */
63
return -EINVAL;
64
65
case INSN_GOOD: /* instruction uses slot */
66
p->ainsn.insn = get_insn_slot();
67
if (!p->ainsn.insn)
68
return -ENOMEM;
69
for (is = 0; is < MAX_INSN_SIZE; ++is)
70
p->ainsn.insn[is] = tmp_insn[is];
71
flush_insns(p->ainsn.insn, MAX_INSN_SIZE);
72
break;
73
74
case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
75
p->ainsn.insn = NULL;
76
break;
77
}
78
79
return 0;
80
}
81
82
void __kprobes arch_arm_kprobe(struct kprobe *p)
83
{
84
*p->addr = KPROBE_BREAKPOINT_INSTRUCTION;
85
flush_insns(p->addr, 1);
86
}
87
88
/*
89
* The actual disarming is done here on each CPU and synchronized using
90
* stop_machine. This synchronization is necessary on SMP to avoid removing
91
* a probe between the moment the 'Undefined Instruction' exception is raised
92
* and the moment the exception handler reads the faulting instruction from
93
* memory.
94
*/
95
int __kprobes __arch_disarm_kprobe(void *p)
96
{
97
struct kprobe *kp = p;
98
*kp->addr = kp->opcode;
99
flush_insns(kp->addr, 1);
100
return 0;
101
}
102
103
void __kprobes arch_disarm_kprobe(struct kprobe *p)
104
{
105
stop_machine(__arch_disarm_kprobe, p, &cpu_online_map);
106
}
107
108
void __kprobes arch_remove_kprobe(struct kprobe *p)
109
{
110
if (p->ainsn.insn) {
111
free_insn_slot(p->ainsn.insn, 0);
112
p->ainsn.insn = NULL;
113
}
114
}
115
116
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
117
{
118
kcb->prev_kprobe.kp = kprobe_running();
119
kcb->prev_kprobe.status = kcb->kprobe_status;
120
}
121
122
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
123
{
124
__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
125
kcb->kprobe_status = kcb->prev_kprobe.status;
126
}
127
128
static void __kprobes set_current_kprobe(struct kprobe *p)
129
{
130
__get_cpu_var(current_kprobe) = p;
131
}
132
133
static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs,
134
struct kprobe_ctlblk *kcb)
135
{
136
regs->ARM_pc += 4;
137
if (p->ainsn.insn_check_cc(regs->ARM_cpsr))
138
p->ainsn.insn_handler(p, regs);
139
}
140
141
/*
142
* Called with IRQs disabled. IRQs must remain disabled from that point
143
* all the way until processing this kprobe is complete. The current
144
* kprobes implementation cannot process more than one nested level of
145
* kprobe, and that level is reserved for user kprobe handlers, so we can't
146
* risk encountering a new kprobe in an interrupt handler.
147
*/
148
void __kprobes kprobe_handler(struct pt_regs *regs)
149
{
150
struct kprobe *p, *cur;
151
struct kprobe_ctlblk *kcb;
152
kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc;
153
154
kcb = get_kprobe_ctlblk();
155
cur = kprobe_running();
156
p = get_kprobe(addr);
157
158
if (p) {
159
if (cur) {
160
/* Kprobe is pending, so we're recursing. */
161
switch (kcb->kprobe_status) {
162
case KPROBE_HIT_ACTIVE:
163
case KPROBE_HIT_SSDONE:
164
/* A pre- or post-handler probe got us here. */
165
kprobes_inc_nmissed_count(p);
166
save_previous_kprobe(kcb);
167
set_current_kprobe(p);
168
kcb->kprobe_status = KPROBE_REENTER;
169
singlestep(p, regs, kcb);
170
restore_previous_kprobe(kcb);
171
break;
172
default:
173
/* impossible cases */
174
BUG();
175
}
176
} else {
177
set_current_kprobe(p);
178
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
179
180
/*
181
* If we have no pre-handler or it returned 0, we
182
* continue with normal processing. If we have a
183
* pre-handler and it returned non-zero, it prepped
184
* for calling the break_handler below on re-entry,
185
* so get out doing nothing more here.
186
*/
187
if (!p->pre_handler || !p->pre_handler(p, regs)) {
188
kcb->kprobe_status = KPROBE_HIT_SS;
189
singlestep(p, regs, kcb);
190
if (p->post_handler) {
191
kcb->kprobe_status = KPROBE_HIT_SSDONE;
192
p->post_handler(p, regs, 0);
193
}
194
reset_current_kprobe();
195
}
196
}
197
} else if (cur) {
198
/* We probably hit a jprobe. Call its break handler. */
199
if (cur->break_handler && cur->break_handler(cur, regs)) {
200
kcb->kprobe_status = KPROBE_HIT_SS;
201
singlestep(cur, regs, kcb);
202
if (cur->post_handler) {
203
kcb->kprobe_status = KPROBE_HIT_SSDONE;
204
cur->post_handler(cur, regs, 0);
205
}
206
}
207
reset_current_kprobe();
208
} else {
209
/*
210
* The probe was removed and a race is in progress.
211
* There is nothing we can do about it. Let's restart
212
* the instruction. By the time we can restart, the
213
* real instruction will be there.
214
*/
215
}
216
}
217
218
static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
219
{
220
unsigned long flags;
221
local_irq_save(flags);
222
kprobe_handler(regs);
223
local_irq_restore(flags);
224
return 0;
225
}
226
227
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
228
{
229
struct kprobe *cur = kprobe_running();
230
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
231
232
switch (kcb->kprobe_status) {
233
case KPROBE_HIT_SS:
234
case KPROBE_REENTER:
235
/*
236
* We are here because the instruction being single
237
* stepped caused a page fault. We reset the current
238
* kprobe and the PC to point back to the probe address
239
* and allow the page fault handler to continue as a
240
* normal page fault.
241
*/
242
regs->ARM_pc = (long)cur->addr;
243
if (kcb->kprobe_status == KPROBE_REENTER) {
244
restore_previous_kprobe(kcb);
245
} else {
246
reset_current_kprobe();
247
}
248
break;
249
250
case KPROBE_HIT_ACTIVE:
251
case KPROBE_HIT_SSDONE:
252
/*
253
* We increment the nmissed count for accounting,
254
* we can also use npre/npostfault count for accounting
255
* these specific fault cases.
256
*/
257
kprobes_inc_nmissed_count(cur);
258
259
/*
260
* We come here because instructions in the pre/post
261
* handler caused the page_fault, this could happen
262
* if handler tries to access user space by
263
* copy_from_user(), get_user() etc. Let the
264
* user-specified handler try to fix it.
265
*/
266
if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
267
return 1;
268
break;
269
270
default:
271
break;
272
}
273
274
return 0;
275
}
276
277
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
278
unsigned long val, void *data)
279
{
280
/*
281
* notify_die() is currently never called on ARM,
282
* so this callback is currently empty.
283
*/
284
return NOTIFY_DONE;
285
}
286
287
/*
288
* When a retprobed function returns, trampoline_handler() is called,
289
* calling the kretprobe's handler. We construct a struct pt_regs to
290
* give a view of registers r0-r11 to the user return-handler. This is
291
* not a complete pt_regs structure, but that should be plenty sufficient
292
* for kretprobe handlers which should normally be interested in r0 only
293
* anyway.
294
*/
295
void __naked __kprobes kretprobe_trampoline(void)
296
{
297
__asm__ __volatile__ (
298
"stmdb sp!, {r0 - r11} \n\t"
299
"mov r0, sp \n\t"
300
"bl trampoline_handler \n\t"
301
"mov lr, r0 \n\t"
302
"ldmia sp!, {r0 - r11} \n\t"
303
"mov pc, lr \n\t"
304
: : : "memory");
305
}
306
307
/* Called from kretprobe_trampoline */
308
static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
309
{
310
struct kretprobe_instance *ri = NULL;
311
struct hlist_head *head, empty_rp;
312
struct hlist_node *node, *tmp;
313
unsigned long flags, orig_ret_address = 0;
314
unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
315
316
INIT_HLIST_HEAD(&empty_rp);
317
kretprobe_hash_lock(current, &head, &flags);
318
319
/*
320
* It is possible to have multiple instances associated with a given
321
* task either because multiple functions in the call path have
322
* a return probe installed on them, and/or more than one return
323
* probe was registered for a target function.
324
*
325
* We can handle this because:
326
* - instances are always inserted at the head of the list
327
* - when multiple return probes are registered for the same
328
* function, the first instance's ret_addr will point to the
329
* real return address, and all the rest will point to
330
* kretprobe_trampoline
331
*/
332
hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
333
if (ri->task != current)
334
/* another task is sharing our hash bucket */
335
continue;
336
337
if (ri->rp && ri->rp->handler) {
338
__get_cpu_var(current_kprobe) = &ri->rp->kp;
339
get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
340
ri->rp->handler(ri, regs);
341
__get_cpu_var(current_kprobe) = NULL;
342
}
343
344
orig_ret_address = (unsigned long)ri->ret_addr;
345
recycle_rp_inst(ri, &empty_rp);
346
347
if (orig_ret_address != trampoline_address)
348
/*
349
* This is the real return address. Any other
350
* instances associated with this task are for
351
* other calls deeper on the call stack
352
*/
353
break;
354
}
355
356
kretprobe_assert(ri, orig_ret_address, trampoline_address);
357
kretprobe_hash_unlock(current, &flags);
358
359
hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
360
hlist_del(&ri->hlist);
361
kfree(ri);
362
}
363
364
return (void *)orig_ret_address;
365
}
366
367
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
368
struct pt_regs *regs)
369
{
370
ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
371
372
/* Replace the return addr with trampoline addr. */
373
regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
374
}
375
376
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
377
{
378
struct jprobe *jp = container_of(p, struct jprobe, kp);
379
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
380
long sp_addr = regs->ARM_sp;
381
382
kcb->jprobe_saved_regs = *regs;
383
memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
384
regs->ARM_pc = (long)jp->entry;
385
regs->ARM_cpsr |= PSR_I_BIT;
386
preempt_disable();
387
return 1;
388
}
389
390
void __kprobes jprobe_return(void)
391
{
392
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
393
394
__asm__ __volatile__ (
395
/*
396
* Setup an empty pt_regs. Fill SP and PC fields as
397
* they're needed by longjmp_break_handler.
398
*
399
* We allocate some slack between the original SP and start of
400
* our fabricated regs. To be precise we want to have worst case
401
* covered which is STMFD with all 16 regs so we allocate 2 *
402
* sizeof(struct_pt_regs)).
403
*
404
* This is to prevent any simulated instruction from writing
405
* over the regs when they are accessing the stack.
406
*/
407
"sub sp, %0, %1 \n\t"
408
"ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
409
"str %0, [sp, %2] \n\t"
410
"str r0, [sp, %3] \n\t"
411
"mov r0, sp \n\t"
412
"bl kprobe_handler \n\t"
413
414
/*
415
* Return to the context saved by setjmp_pre_handler
416
* and restored by longjmp_break_handler.
417
*/
418
"ldr r0, [sp, %4] \n\t"
419
"msr cpsr_cxsf, r0 \n\t"
420
"ldmia sp, {r0 - pc} \n\t"
421
:
422
: "r" (kcb->jprobe_saved_regs.ARM_sp),
423
"I" (sizeof(struct pt_regs) * 2),
424
"J" (offsetof(struct pt_regs, ARM_sp)),
425
"J" (offsetof(struct pt_regs, ARM_pc)),
426
"J" (offsetof(struct pt_regs, ARM_cpsr))
427
: "memory", "cc");
428
}
429
430
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
431
{
432
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
433
long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
434
long orig_sp = regs->ARM_sp;
435
struct jprobe *jp = container_of(p, struct jprobe, kp);
436
437
if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
438
if (orig_sp != stack_addr) {
439
struct pt_regs *saved_regs =
440
(struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
441
printk("current sp %lx does not match saved sp %lx\n",
442
orig_sp, stack_addr);
443
printk("Saved registers for jprobe %p\n", jp);
444
show_regs(saved_regs);
445
printk("Current registers\n");
446
show_regs(regs);
447
BUG();
448
}
449
*regs = kcb->jprobe_saved_regs;
450
memcpy((void *)stack_addr, kcb->jprobes_stack,
451
MIN_STACK_SIZE(stack_addr));
452
preempt_enable_no_resched();
453
return 1;
454
}
455
return 0;
456
}
457
458
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
459
{
460
return 0;
461
}
462
463
static struct undef_hook kprobes_break_hook = {
464
.instr_mask = 0xffffffff,
465
.instr_val = KPROBE_BREAKPOINT_INSTRUCTION,
466
.cpsr_mask = MODE_MASK,
467
.cpsr_val = SVC_MODE,
468
.fn = kprobe_trap_handler,
469
};
470
471
int __init arch_init_kprobes()
472
{
473
arm_kprobe_decode_init();
474
register_undef_hook(&kprobes_break_hook);
475
return 0;
476
}
477
478