Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/arm/mach-exynos4/cpufreq.c
10817 views
1
/* linux/arch/arm/mach-exynos4/cpufreq.c
2
*
3
* Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
4
* http://www.samsung.com
5
*
6
* EXYNOS4 - CPU frequency scaling support
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU General Public License version 2 as
10
* published by the Free Software Foundation.
11
*/
12
13
#include <linux/types.h>
14
#include <linux/kernel.h>
15
#include <linux/err.h>
16
#include <linux/clk.h>
17
#include <linux/io.h>
18
#include <linux/slab.h>
19
#include <linux/regulator/consumer.h>
20
#include <linux/cpufreq.h>
21
22
#include <mach/map.h>
23
#include <mach/regs-clock.h>
24
#include <mach/regs-mem.h>
25
26
#include <plat/clock.h>
27
#include <plat/pm.h>
28
29
static struct clk *cpu_clk;
30
static struct clk *moutcore;
31
static struct clk *mout_mpll;
32
static struct clk *mout_apll;
33
34
static struct regulator *arm_regulator;
35
static struct regulator *int_regulator;
36
37
static struct cpufreq_freqs freqs;
38
static unsigned int memtype;
39
40
enum exynos4_memory_type {
41
DDR2 = 4,
42
LPDDR2,
43
DDR3,
44
};
45
46
enum cpufreq_level_index {
47
L0, L1, L2, L3, CPUFREQ_LEVEL_END,
48
};
49
50
static struct cpufreq_frequency_table exynos4_freq_table[] = {
51
{L0, 1000*1000},
52
{L1, 800*1000},
53
{L2, 400*1000},
54
{L3, 100*1000},
55
{0, CPUFREQ_TABLE_END},
56
};
57
58
static unsigned int clkdiv_cpu0[CPUFREQ_LEVEL_END][7] = {
59
/*
60
* Clock divider value for following
61
* { DIVCORE, DIVCOREM0, DIVCOREM1, DIVPERIPH,
62
* DIVATB, DIVPCLK_DBG, DIVAPLL }
63
*/
64
65
/* ARM L0: 1000MHz */
66
{ 0, 3, 7, 3, 3, 0, 1 },
67
68
/* ARM L1: 800MHz */
69
{ 0, 3, 7, 3, 3, 0, 1 },
70
71
/* ARM L2: 400MHz */
72
{ 0, 1, 3, 1, 3, 0, 1 },
73
74
/* ARM L3: 100MHz */
75
{ 0, 0, 1, 0, 3, 1, 1 },
76
};
77
78
static unsigned int clkdiv_cpu1[CPUFREQ_LEVEL_END][2] = {
79
/*
80
* Clock divider value for following
81
* { DIVCOPY, DIVHPM }
82
*/
83
84
/* ARM L0: 1000MHz */
85
{ 3, 0 },
86
87
/* ARM L1: 800MHz */
88
{ 3, 0 },
89
90
/* ARM L2: 400MHz */
91
{ 3, 0 },
92
93
/* ARM L3: 100MHz */
94
{ 3, 0 },
95
};
96
97
static unsigned int clkdiv_dmc0[CPUFREQ_LEVEL_END][8] = {
98
/*
99
* Clock divider value for following
100
* { DIVACP, DIVACP_PCLK, DIVDPHY, DIVDMC, DIVDMCD
101
* DIVDMCP, DIVCOPY2, DIVCORE_TIMERS }
102
*/
103
104
/* DMC L0: 400MHz */
105
{ 3, 1, 1, 1, 1, 1, 3, 1 },
106
107
/* DMC L1: 400MHz */
108
{ 3, 1, 1, 1, 1, 1, 3, 1 },
109
110
/* DMC L2: 266.7MHz */
111
{ 7, 1, 1, 2, 1, 1, 3, 1 },
112
113
/* DMC L3: 200MHz */
114
{ 7, 1, 1, 3, 1, 1, 3, 1 },
115
};
116
117
static unsigned int clkdiv_top[CPUFREQ_LEVEL_END][5] = {
118
/*
119
* Clock divider value for following
120
* { DIVACLK200, DIVACLK100, DIVACLK160, DIVACLK133, DIVONENAND }
121
*/
122
123
/* ACLK200 L0: 200MHz */
124
{ 3, 7, 4, 5, 1 },
125
126
/* ACLK200 L1: 200MHz */
127
{ 3, 7, 4, 5, 1 },
128
129
/* ACLK200 L2: 160MHz */
130
{ 4, 7, 5, 7, 1 },
131
132
/* ACLK200 L3: 133.3MHz */
133
{ 5, 7, 7, 7, 1 },
134
};
135
136
static unsigned int clkdiv_lr_bus[CPUFREQ_LEVEL_END][2] = {
137
/*
138
* Clock divider value for following
139
* { DIVGDL/R, DIVGPL/R }
140
*/
141
142
/* ACLK_GDL/R L0: 200MHz */
143
{ 3, 1 },
144
145
/* ACLK_GDL/R L1: 200MHz */
146
{ 3, 1 },
147
148
/* ACLK_GDL/R L2: 160MHz */
149
{ 4, 1 },
150
151
/* ACLK_GDL/R L3: 133.3MHz */
152
{ 5, 1 },
153
};
154
155
struct cpufreq_voltage_table {
156
unsigned int index; /* any */
157
unsigned int arm_volt; /* uV */
158
unsigned int int_volt;
159
};
160
161
static struct cpufreq_voltage_table exynos4_volt_table[CPUFREQ_LEVEL_END] = {
162
{
163
.index = L0,
164
.arm_volt = 1200000,
165
.int_volt = 1100000,
166
}, {
167
.index = L1,
168
.arm_volt = 1100000,
169
.int_volt = 1100000,
170
}, {
171
.index = L2,
172
.arm_volt = 1000000,
173
.int_volt = 1000000,
174
}, {
175
.index = L3,
176
.arm_volt = 900000,
177
.int_volt = 1000000,
178
},
179
};
180
181
static unsigned int exynos4_apll_pms_table[CPUFREQ_LEVEL_END] = {
182
/* APLL FOUT L0: 1000MHz */
183
((250 << 16) | (6 << 8) | 1),
184
185
/* APLL FOUT L1: 800MHz */
186
((200 << 16) | (6 << 8) | 1),
187
188
/* APLL FOUT L2 : 400MHz */
189
((200 << 16) | (6 << 8) | 2),
190
191
/* APLL FOUT L3: 100MHz */
192
((200 << 16) | (6 << 8) | 4),
193
};
194
195
int exynos4_verify_speed(struct cpufreq_policy *policy)
196
{
197
return cpufreq_frequency_table_verify(policy, exynos4_freq_table);
198
}
199
200
unsigned int exynos4_getspeed(unsigned int cpu)
201
{
202
return clk_get_rate(cpu_clk) / 1000;
203
}
204
205
void exynos4_set_clkdiv(unsigned int div_index)
206
{
207
unsigned int tmp;
208
209
/* Change Divider - CPU0 */
210
211
tmp = __raw_readl(S5P_CLKDIV_CPU);
212
213
tmp &= ~(S5P_CLKDIV_CPU0_CORE_MASK | S5P_CLKDIV_CPU0_COREM0_MASK |
214
S5P_CLKDIV_CPU0_COREM1_MASK | S5P_CLKDIV_CPU0_PERIPH_MASK |
215
S5P_CLKDIV_CPU0_ATB_MASK | S5P_CLKDIV_CPU0_PCLKDBG_MASK |
216
S5P_CLKDIV_CPU0_APLL_MASK);
217
218
tmp |= ((clkdiv_cpu0[div_index][0] << S5P_CLKDIV_CPU0_CORE_SHIFT) |
219
(clkdiv_cpu0[div_index][1] << S5P_CLKDIV_CPU0_COREM0_SHIFT) |
220
(clkdiv_cpu0[div_index][2] << S5P_CLKDIV_CPU0_COREM1_SHIFT) |
221
(clkdiv_cpu0[div_index][3] << S5P_CLKDIV_CPU0_PERIPH_SHIFT) |
222
(clkdiv_cpu0[div_index][4] << S5P_CLKDIV_CPU0_ATB_SHIFT) |
223
(clkdiv_cpu0[div_index][5] << S5P_CLKDIV_CPU0_PCLKDBG_SHIFT) |
224
(clkdiv_cpu0[div_index][6] << S5P_CLKDIV_CPU0_APLL_SHIFT));
225
226
__raw_writel(tmp, S5P_CLKDIV_CPU);
227
228
do {
229
tmp = __raw_readl(S5P_CLKDIV_STATCPU);
230
} while (tmp & 0x1111111);
231
232
/* Change Divider - CPU1 */
233
234
tmp = __raw_readl(S5P_CLKDIV_CPU1);
235
236
tmp &= ~((0x7 << 4) | 0x7);
237
238
tmp |= ((clkdiv_cpu1[div_index][0] << 4) |
239
(clkdiv_cpu1[div_index][1] << 0));
240
241
__raw_writel(tmp, S5P_CLKDIV_CPU1);
242
243
do {
244
tmp = __raw_readl(S5P_CLKDIV_STATCPU1);
245
} while (tmp & 0x11);
246
247
/* Change Divider - DMC0 */
248
249
tmp = __raw_readl(S5P_CLKDIV_DMC0);
250
251
tmp &= ~(S5P_CLKDIV_DMC0_ACP_MASK | S5P_CLKDIV_DMC0_ACPPCLK_MASK |
252
S5P_CLKDIV_DMC0_DPHY_MASK | S5P_CLKDIV_DMC0_DMC_MASK |
253
S5P_CLKDIV_DMC0_DMCD_MASK | S5P_CLKDIV_DMC0_DMCP_MASK |
254
S5P_CLKDIV_DMC0_COPY2_MASK | S5P_CLKDIV_DMC0_CORETI_MASK);
255
256
tmp |= ((clkdiv_dmc0[div_index][0] << S5P_CLKDIV_DMC0_ACP_SHIFT) |
257
(clkdiv_dmc0[div_index][1] << S5P_CLKDIV_DMC0_ACPPCLK_SHIFT) |
258
(clkdiv_dmc0[div_index][2] << S5P_CLKDIV_DMC0_DPHY_SHIFT) |
259
(clkdiv_dmc0[div_index][3] << S5P_CLKDIV_DMC0_DMC_SHIFT) |
260
(clkdiv_dmc0[div_index][4] << S5P_CLKDIV_DMC0_DMCD_SHIFT) |
261
(clkdiv_dmc0[div_index][5] << S5P_CLKDIV_DMC0_DMCP_SHIFT) |
262
(clkdiv_dmc0[div_index][6] << S5P_CLKDIV_DMC0_COPY2_SHIFT) |
263
(clkdiv_dmc0[div_index][7] << S5P_CLKDIV_DMC0_CORETI_SHIFT));
264
265
__raw_writel(tmp, S5P_CLKDIV_DMC0);
266
267
do {
268
tmp = __raw_readl(S5P_CLKDIV_STAT_DMC0);
269
} while (tmp & 0x11111111);
270
271
/* Change Divider - TOP */
272
273
tmp = __raw_readl(S5P_CLKDIV_TOP);
274
275
tmp &= ~(S5P_CLKDIV_TOP_ACLK200_MASK | S5P_CLKDIV_TOP_ACLK100_MASK |
276
S5P_CLKDIV_TOP_ACLK160_MASK | S5P_CLKDIV_TOP_ACLK133_MASK |
277
S5P_CLKDIV_TOP_ONENAND_MASK);
278
279
tmp |= ((clkdiv_top[div_index][0] << S5P_CLKDIV_TOP_ACLK200_SHIFT) |
280
(clkdiv_top[div_index][1] << S5P_CLKDIV_TOP_ACLK100_SHIFT) |
281
(clkdiv_top[div_index][2] << S5P_CLKDIV_TOP_ACLK160_SHIFT) |
282
(clkdiv_top[div_index][3] << S5P_CLKDIV_TOP_ACLK133_SHIFT) |
283
(clkdiv_top[div_index][4] << S5P_CLKDIV_TOP_ONENAND_SHIFT));
284
285
__raw_writel(tmp, S5P_CLKDIV_TOP);
286
287
do {
288
tmp = __raw_readl(S5P_CLKDIV_STAT_TOP);
289
} while (tmp & 0x11111);
290
291
/* Change Divider - LEFTBUS */
292
293
tmp = __raw_readl(S5P_CLKDIV_LEFTBUS);
294
295
tmp &= ~(S5P_CLKDIV_BUS_GDLR_MASK | S5P_CLKDIV_BUS_GPLR_MASK);
296
297
tmp |= ((clkdiv_lr_bus[div_index][0] << S5P_CLKDIV_BUS_GDLR_SHIFT) |
298
(clkdiv_lr_bus[div_index][1] << S5P_CLKDIV_BUS_GPLR_SHIFT));
299
300
__raw_writel(tmp, S5P_CLKDIV_LEFTBUS);
301
302
do {
303
tmp = __raw_readl(S5P_CLKDIV_STAT_LEFTBUS);
304
} while (tmp & 0x11);
305
306
/* Change Divider - RIGHTBUS */
307
308
tmp = __raw_readl(S5P_CLKDIV_RIGHTBUS);
309
310
tmp &= ~(S5P_CLKDIV_BUS_GDLR_MASK | S5P_CLKDIV_BUS_GPLR_MASK);
311
312
tmp |= ((clkdiv_lr_bus[div_index][0] << S5P_CLKDIV_BUS_GDLR_SHIFT) |
313
(clkdiv_lr_bus[div_index][1] << S5P_CLKDIV_BUS_GPLR_SHIFT));
314
315
__raw_writel(tmp, S5P_CLKDIV_RIGHTBUS);
316
317
do {
318
tmp = __raw_readl(S5P_CLKDIV_STAT_RIGHTBUS);
319
} while (tmp & 0x11);
320
}
321
322
static void exynos4_set_apll(unsigned int index)
323
{
324
unsigned int tmp;
325
326
/* 1. MUX_CORE_SEL = MPLL, ARMCLK uses MPLL for lock time */
327
clk_set_parent(moutcore, mout_mpll);
328
329
do {
330
tmp = (__raw_readl(S5P_CLKMUX_STATCPU)
331
>> S5P_CLKSRC_CPU_MUXCORE_SHIFT);
332
tmp &= 0x7;
333
} while (tmp != 0x2);
334
335
/* 2. Set APLL Lock time */
336
__raw_writel(S5P_APLL_LOCKTIME, S5P_APLL_LOCK);
337
338
/* 3. Change PLL PMS values */
339
tmp = __raw_readl(S5P_APLL_CON0);
340
tmp &= ~((0x3ff << 16) | (0x3f << 8) | (0x7 << 0));
341
tmp |= exynos4_apll_pms_table[index];
342
__raw_writel(tmp, S5P_APLL_CON0);
343
344
/* 4. wait_lock_time */
345
do {
346
tmp = __raw_readl(S5P_APLL_CON0);
347
} while (!(tmp & (0x1 << S5P_APLLCON0_LOCKED_SHIFT)));
348
349
/* 5. MUX_CORE_SEL = APLL */
350
clk_set_parent(moutcore, mout_apll);
351
352
do {
353
tmp = __raw_readl(S5P_CLKMUX_STATCPU);
354
tmp &= S5P_CLKMUX_STATCPU_MUXCORE_MASK;
355
} while (tmp != (0x1 << S5P_CLKSRC_CPU_MUXCORE_SHIFT));
356
}
357
358
static void exynos4_set_frequency(unsigned int old_index, unsigned int new_index)
359
{
360
unsigned int tmp;
361
362
if (old_index > new_index) {
363
/* The frequency changing to L0 needs to change apll */
364
if (freqs.new == exynos4_freq_table[L0].frequency) {
365
/* 1. Change the system clock divider values */
366
exynos4_set_clkdiv(new_index);
367
368
/* 2. Change the apll m,p,s value */
369
exynos4_set_apll(new_index);
370
} else {
371
/* 1. Change the system clock divider values */
372
exynos4_set_clkdiv(new_index);
373
374
/* 2. Change just s value in apll m,p,s value */
375
tmp = __raw_readl(S5P_APLL_CON0);
376
tmp &= ~(0x7 << 0);
377
tmp |= (exynos4_apll_pms_table[new_index] & 0x7);
378
__raw_writel(tmp, S5P_APLL_CON0);
379
}
380
}
381
382
else if (old_index < new_index) {
383
/* The frequency changing from L0 needs to change apll */
384
if (freqs.old == exynos4_freq_table[L0].frequency) {
385
/* 1. Change the apll m,p,s value */
386
exynos4_set_apll(new_index);
387
388
/* 2. Change the system clock divider values */
389
exynos4_set_clkdiv(new_index);
390
} else {
391
/* 1. Change just s value in apll m,p,s value */
392
tmp = __raw_readl(S5P_APLL_CON0);
393
tmp &= ~(0x7 << 0);
394
tmp |= (exynos4_apll_pms_table[new_index] & 0x7);
395
__raw_writel(tmp, S5P_APLL_CON0);
396
397
/* 2. Change the system clock divider values */
398
exynos4_set_clkdiv(new_index);
399
}
400
}
401
}
402
403
static int exynos4_target(struct cpufreq_policy *policy,
404
unsigned int target_freq,
405
unsigned int relation)
406
{
407
unsigned int index, old_index;
408
unsigned int arm_volt, int_volt;
409
410
freqs.old = exynos4_getspeed(policy->cpu);
411
412
if (cpufreq_frequency_table_target(policy, exynos4_freq_table,
413
freqs.old, relation, &old_index))
414
return -EINVAL;
415
416
if (cpufreq_frequency_table_target(policy, exynos4_freq_table,
417
target_freq, relation, &index))
418
return -EINVAL;
419
420
freqs.new = exynos4_freq_table[index].frequency;
421
freqs.cpu = policy->cpu;
422
423
if (freqs.new == freqs.old)
424
return 0;
425
426
/* get the voltage value */
427
arm_volt = exynos4_volt_table[index].arm_volt;
428
int_volt = exynos4_volt_table[index].int_volt;
429
430
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
431
432
/* control regulator */
433
if (freqs.new > freqs.old) {
434
/* Voltage up */
435
regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
436
regulator_set_voltage(int_regulator, int_volt, int_volt);
437
}
438
439
/* Clock Configuration Procedure */
440
exynos4_set_frequency(old_index, index);
441
442
/* control regulator */
443
if (freqs.new < freqs.old) {
444
/* Voltage down */
445
regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
446
regulator_set_voltage(int_regulator, int_volt, int_volt);
447
}
448
449
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
450
451
return 0;
452
}
453
454
#ifdef CONFIG_PM
455
static int exynos4_cpufreq_suspend(struct cpufreq_policy *policy)
456
{
457
return 0;
458
}
459
460
static int exynos4_cpufreq_resume(struct cpufreq_policy *policy)
461
{
462
return 0;
463
}
464
#endif
465
466
static int exynos4_cpufreq_cpu_init(struct cpufreq_policy *policy)
467
{
468
policy->cur = policy->min = policy->max = exynos4_getspeed(policy->cpu);
469
470
cpufreq_frequency_table_get_attr(exynos4_freq_table, policy->cpu);
471
472
/* set the transition latency value */
473
policy->cpuinfo.transition_latency = 100000;
474
475
/*
476
* EXYNOS4 multi-core processors has 2 cores
477
* that the frequency cannot be set independently.
478
* Each cpu is bound to the same speed.
479
* So the affected cpu is all of the cpus.
480
*/
481
cpumask_setall(policy->cpus);
482
483
return cpufreq_frequency_table_cpuinfo(policy, exynos4_freq_table);
484
}
485
486
static struct cpufreq_driver exynos4_driver = {
487
.flags = CPUFREQ_STICKY,
488
.verify = exynos4_verify_speed,
489
.target = exynos4_target,
490
.get = exynos4_getspeed,
491
.init = exynos4_cpufreq_cpu_init,
492
.name = "exynos4_cpufreq",
493
#ifdef CONFIG_PM
494
.suspend = exynos4_cpufreq_suspend,
495
.resume = exynos4_cpufreq_resume,
496
#endif
497
};
498
499
static int __init exynos4_cpufreq_init(void)
500
{
501
cpu_clk = clk_get(NULL, "armclk");
502
if (IS_ERR(cpu_clk))
503
return PTR_ERR(cpu_clk);
504
505
moutcore = clk_get(NULL, "moutcore");
506
if (IS_ERR(moutcore))
507
goto out;
508
509
mout_mpll = clk_get(NULL, "mout_mpll");
510
if (IS_ERR(mout_mpll))
511
goto out;
512
513
mout_apll = clk_get(NULL, "mout_apll");
514
if (IS_ERR(mout_apll))
515
goto out;
516
517
arm_regulator = regulator_get(NULL, "vdd_arm");
518
if (IS_ERR(arm_regulator)) {
519
printk(KERN_ERR "failed to get resource %s\n", "vdd_arm");
520
goto out;
521
}
522
523
int_regulator = regulator_get(NULL, "vdd_int");
524
if (IS_ERR(int_regulator)) {
525
printk(KERN_ERR "failed to get resource %s\n", "vdd_int");
526
goto out;
527
}
528
529
/*
530
* Check DRAM type.
531
* Because DVFS level is different according to DRAM type.
532
*/
533
memtype = __raw_readl(S5P_VA_DMC0 + S5P_DMC0_MEMCON_OFFSET);
534
memtype = (memtype >> S5P_DMC0_MEMTYPE_SHIFT);
535
memtype &= S5P_DMC0_MEMTYPE_MASK;
536
537
if ((memtype < DDR2) && (memtype > DDR3)) {
538
printk(KERN_ERR "%s: wrong memtype= 0x%x\n", __func__, memtype);
539
goto out;
540
} else {
541
printk(KERN_DEBUG "%s: memtype= 0x%x\n", __func__, memtype);
542
}
543
544
return cpufreq_register_driver(&exynos4_driver);
545
546
out:
547
if (!IS_ERR(cpu_clk))
548
clk_put(cpu_clk);
549
550
if (!IS_ERR(moutcore))
551
clk_put(moutcore);
552
553
if (!IS_ERR(mout_mpll))
554
clk_put(mout_mpll);
555
556
if (!IS_ERR(mout_apll))
557
clk_put(mout_apll);
558
559
if (!IS_ERR(arm_regulator))
560
regulator_put(arm_regulator);
561
562
if (!IS_ERR(int_regulator))
563
regulator_put(int_regulator);
564
565
printk(KERN_ERR "%s: failed initialization\n", __func__);
566
567
return -EINVAL;
568
}
569
late_initcall(exynos4_cpufreq_init);
570
571