Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/arm/mach-exynos4/mct.c
10817 views
1
/* linux/arch/arm/mach-exynos4/mct.c
2
*
3
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
4
* http://www.samsung.com
5
*
6
* EXYNOS4 MCT(Multi-Core Timer) support
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU General Public License version 2 as
10
* published by the Free Software Foundation.
11
*/
12
13
#include <linux/sched.h>
14
#include <linux/interrupt.h>
15
#include <linux/irq.h>
16
#include <linux/err.h>
17
#include <linux/clk.h>
18
#include <linux/clockchips.h>
19
#include <linux/platform_device.h>
20
#include <linux/delay.h>
21
#include <linux/percpu.h>
22
23
#include <mach/map.h>
24
#include <mach/regs-mct.h>
25
#include <asm/mach/time.h>
26
27
static unsigned long clk_cnt_per_tick;
28
static unsigned long clk_rate;
29
30
struct mct_clock_event_device {
31
struct clock_event_device *evt;
32
void __iomem *base;
33
};
34
35
struct mct_clock_event_device mct_tick[2];
36
37
static void exynos4_mct_write(unsigned int value, void *addr)
38
{
39
void __iomem *stat_addr;
40
u32 mask;
41
u32 i;
42
43
__raw_writel(value, addr);
44
45
switch ((u32) addr) {
46
case (u32) EXYNOS4_MCT_G_TCON:
47
stat_addr = EXYNOS4_MCT_G_WSTAT;
48
mask = 1 << 16; /* G_TCON write status */
49
break;
50
case (u32) EXYNOS4_MCT_G_COMP0_L:
51
stat_addr = EXYNOS4_MCT_G_WSTAT;
52
mask = 1 << 0; /* G_COMP0_L write status */
53
break;
54
case (u32) EXYNOS4_MCT_G_COMP0_U:
55
stat_addr = EXYNOS4_MCT_G_WSTAT;
56
mask = 1 << 1; /* G_COMP0_U write status */
57
break;
58
case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
59
stat_addr = EXYNOS4_MCT_G_WSTAT;
60
mask = 1 << 2; /* G_COMP0_ADD_INCR write status */
61
break;
62
case (u32) EXYNOS4_MCT_G_CNT_L:
63
stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
64
mask = 1 << 0; /* G_CNT_L write status */
65
break;
66
case (u32) EXYNOS4_MCT_G_CNT_U:
67
stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
68
mask = 1 << 1; /* G_CNT_U write status */
69
break;
70
case (u32)(EXYNOS4_MCT_L0_BASE + MCT_L_TCON_OFFSET):
71
stat_addr = EXYNOS4_MCT_L0_BASE + MCT_L_WSTAT_OFFSET;
72
mask = 1 << 3; /* L0_TCON write status */
73
break;
74
case (u32)(EXYNOS4_MCT_L1_BASE + MCT_L_TCON_OFFSET):
75
stat_addr = EXYNOS4_MCT_L1_BASE + MCT_L_WSTAT_OFFSET;
76
mask = 1 << 3; /* L1_TCON write status */
77
break;
78
case (u32)(EXYNOS4_MCT_L0_BASE + MCT_L_TCNTB_OFFSET):
79
stat_addr = EXYNOS4_MCT_L0_BASE + MCT_L_WSTAT_OFFSET;
80
mask = 1 << 0; /* L0_TCNTB write status */
81
break;
82
case (u32)(EXYNOS4_MCT_L1_BASE + MCT_L_TCNTB_OFFSET):
83
stat_addr = EXYNOS4_MCT_L1_BASE + MCT_L_WSTAT_OFFSET;
84
mask = 1 << 0; /* L1_TCNTB write status */
85
break;
86
case (u32)(EXYNOS4_MCT_L0_BASE + MCT_L_ICNTB_OFFSET):
87
stat_addr = EXYNOS4_MCT_L0_BASE + MCT_L_WSTAT_OFFSET;
88
mask = 1 << 1; /* L0_ICNTB write status */
89
break;
90
case (u32)(EXYNOS4_MCT_L1_BASE + MCT_L_ICNTB_OFFSET):
91
stat_addr = EXYNOS4_MCT_L1_BASE + MCT_L_WSTAT_OFFSET;
92
mask = 1 << 1; /* L1_ICNTB write status */
93
break;
94
default:
95
return;
96
}
97
98
/* Wait maximum 1 ms until written values are applied */
99
for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
100
if (__raw_readl(stat_addr) & mask) {
101
__raw_writel(mask, stat_addr);
102
return;
103
}
104
105
panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
106
}
107
108
/* Clocksource handling */
109
static void exynos4_mct_frc_start(u32 hi, u32 lo)
110
{
111
u32 reg;
112
113
exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
114
exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
115
116
reg = __raw_readl(EXYNOS4_MCT_G_TCON);
117
reg |= MCT_G_TCON_START;
118
exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
119
}
120
121
static cycle_t exynos4_frc_read(struct clocksource *cs)
122
{
123
unsigned int lo, hi;
124
u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
125
126
do {
127
hi = hi2;
128
lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
129
hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
130
} while (hi != hi2);
131
132
return ((cycle_t)hi << 32) | lo;
133
}
134
135
struct clocksource mct_frc = {
136
.name = "mct-frc",
137
.rating = 400,
138
.read = exynos4_frc_read,
139
.mask = CLOCKSOURCE_MASK(64),
140
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
141
};
142
143
static void __init exynos4_clocksource_init(void)
144
{
145
exynos4_mct_frc_start(0, 0);
146
147
if (clocksource_register_hz(&mct_frc, clk_rate))
148
panic("%s: can't register clocksource\n", mct_frc.name);
149
}
150
151
static void exynos4_mct_comp0_stop(void)
152
{
153
unsigned int tcon;
154
155
tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
156
tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
157
158
exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
159
exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
160
}
161
162
static void exynos4_mct_comp0_start(enum clock_event_mode mode,
163
unsigned long cycles)
164
{
165
unsigned int tcon;
166
cycle_t comp_cycle;
167
168
tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
169
170
if (mode == CLOCK_EVT_MODE_PERIODIC) {
171
tcon |= MCT_G_TCON_COMP0_AUTO_INC;
172
exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
173
}
174
175
comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
176
exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
177
exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
178
179
exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
180
181
tcon |= MCT_G_TCON_COMP0_ENABLE;
182
exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
183
}
184
185
static int exynos4_comp_set_next_event(unsigned long cycles,
186
struct clock_event_device *evt)
187
{
188
exynos4_mct_comp0_start(evt->mode, cycles);
189
190
return 0;
191
}
192
193
static void exynos4_comp_set_mode(enum clock_event_mode mode,
194
struct clock_event_device *evt)
195
{
196
exynos4_mct_comp0_stop();
197
198
switch (mode) {
199
case CLOCK_EVT_MODE_PERIODIC:
200
exynos4_mct_comp0_start(mode, clk_cnt_per_tick);
201
break;
202
203
case CLOCK_EVT_MODE_ONESHOT:
204
case CLOCK_EVT_MODE_UNUSED:
205
case CLOCK_EVT_MODE_SHUTDOWN:
206
case CLOCK_EVT_MODE_RESUME:
207
break;
208
}
209
}
210
211
static struct clock_event_device mct_comp_device = {
212
.name = "mct-comp",
213
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
214
.rating = 250,
215
.set_next_event = exynos4_comp_set_next_event,
216
.set_mode = exynos4_comp_set_mode,
217
};
218
219
static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
220
{
221
struct clock_event_device *evt = dev_id;
222
223
exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
224
225
evt->event_handler(evt);
226
227
return IRQ_HANDLED;
228
}
229
230
static struct irqaction mct_comp_event_irq = {
231
.name = "mct_comp_irq",
232
.flags = IRQF_TIMER | IRQF_IRQPOLL,
233
.handler = exynos4_mct_comp_isr,
234
.dev_id = &mct_comp_device,
235
};
236
237
static void exynos4_clockevent_init(void)
238
{
239
clk_cnt_per_tick = clk_rate / 2 / HZ;
240
241
clockevents_calc_mult_shift(&mct_comp_device, clk_rate / 2, 5);
242
mct_comp_device.max_delta_ns =
243
clockevent_delta2ns(0xffffffff, &mct_comp_device);
244
mct_comp_device.min_delta_ns =
245
clockevent_delta2ns(0xf, &mct_comp_device);
246
mct_comp_device.cpumask = cpumask_of(0);
247
clockevents_register_device(&mct_comp_device);
248
249
setup_irq(IRQ_MCT_G0, &mct_comp_event_irq);
250
}
251
252
#ifdef CONFIG_LOCAL_TIMERS
253
/* Clock event handling */
254
static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
255
{
256
unsigned long tmp;
257
unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
258
void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;
259
260
tmp = __raw_readl(addr);
261
if (tmp & mask) {
262
tmp &= ~mask;
263
exynos4_mct_write(tmp, addr);
264
}
265
}
266
267
static void exynos4_mct_tick_start(unsigned long cycles,
268
struct mct_clock_event_device *mevt)
269
{
270
unsigned long tmp;
271
272
exynos4_mct_tick_stop(mevt);
273
274
tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
275
276
/* update interrupt count buffer */
277
exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
278
279
/* enable MCT tick interrupt */
280
exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
281
282
tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
283
tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
284
MCT_L_TCON_INTERVAL_MODE;
285
exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
286
}
287
288
static int exynos4_tick_set_next_event(unsigned long cycles,
289
struct clock_event_device *evt)
290
{
291
struct mct_clock_event_device *mevt = &mct_tick[smp_processor_id()];
292
293
exynos4_mct_tick_start(cycles, mevt);
294
295
return 0;
296
}
297
298
static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
299
struct clock_event_device *evt)
300
{
301
struct mct_clock_event_device *mevt = &mct_tick[smp_processor_id()];
302
303
exynos4_mct_tick_stop(mevt);
304
305
switch (mode) {
306
case CLOCK_EVT_MODE_PERIODIC:
307
exynos4_mct_tick_start(clk_cnt_per_tick, mevt);
308
break;
309
310
case CLOCK_EVT_MODE_ONESHOT:
311
case CLOCK_EVT_MODE_UNUSED:
312
case CLOCK_EVT_MODE_SHUTDOWN:
313
case CLOCK_EVT_MODE_RESUME:
314
break;
315
}
316
}
317
318
static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
319
{
320
struct mct_clock_event_device *mevt = dev_id;
321
struct clock_event_device *evt = mevt->evt;
322
323
/*
324
* This is for supporting oneshot mode.
325
* Mct would generate interrupt periodically
326
* without explicit stopping.
327
*/
328
if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
329
exynos4_mct_tick_stop(mevt);
330
331
/* Clear the MCT tick interrupt */
332
exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
333
334
evt->event_handler(evt);
335
336
return IRQ_HANDLED;
337
}
338
339
static struct irqaction mct_tick0_event_irq = {
340
.name = "mct_tick0_irq",
341
.flags = IRQF_TIMER | IRQF_NOBALANCING,
342
.handler = exynos4_mct_tick_isr,
343
};
344
345
static struct irqaction mct_tick1_event_irq = {
346
.name = "mct_tick1_irq",
347
.flags = IRQF_TIMER | IRQF_NOBALANCING,
348
.handler = exynos4_mct_tick_isr,
349
};
350
351
static void exynos4_mct_tick_init(struct clock_event_device *evt)
352
{
353
unsigned int cpu = smp_processor_id();
354
355
mct_tick[cpu].evt = evt;
356
357
if (cpu == 0) {
358
mct_tick[cpu].base = EXYNOS4_MCT_L0_BASE;
359
evt->name = "mct_tick0";
360
} else {
361
mct_tick[cpu].base = EXYNOS4_MCT_L1_BASE;
362
evt->name = "mct_tick1";
363
}
364
365
evt->cpumask = cpumask_of(cpu);
366
evt->set_next_event = exynos4_tick_set_next_event;
367
evt->set_mode = exynos4_tick_set_mode;
368
evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
369
evt->rating = 450;
370
371
clockevents_calc_mult_shift(evt, clk_rate / 2, 5);
372
evt->max_delta_ns =
373
clockevent_delta2ns(0x7fffffff, evt);
374
evt->min_delta_ns =
375
clockevent_delta2ns(0xf, evt);
376
377
clockevents_register_device(evt);
378
379
exynos4_mct_write(0x1, mct_tick[cpu].base + MCT_L_TCNTB_OFFSET);
380
381
if (cpu == 0) {
382
mct_tick0_event_irq.dev_id = &mct_tick[cpu];
383
setup_irq(IRQ_MCT_L0, &mct_tick0_event_irq);
384
} else {
385
mct_tick1_event_irq.dev_id = &mct_tick[cpu];
386
irq_set_affinity(IRQ_MCT1, cpumask_of(1));
387
setup_irq(IRQ_MCT_L1, &mct_tick1_event_irq);
388
}
389
}
390
391
/* Setup the local clock events for a CPU */
392
void __cpuinit local_timer_setup(struct clock_event_device *evt)
393
{
394
exynos4_mct_tick_init(evt);
395
}
396
397
int local_timer_ack(void)
398
{
399
return 0;
400
}
401
402
#endif /* CONFIG_LOCAL_TIMERS */
403
404
static void __init exynos4_timer_resources(void)
405
{
406
struct clk *mct_clk;
407
mct_clk = clk_get(NULL, "xtal");
408
409
clk_rate = clk_get_rate(mct_clk);
410
}
411
412
static void __init exynos4_timer_init(void)
413
{
414
exynos4_timer_resources();
415
exynos4_clocksource_init();
416
exynos4_clockevent_init();
417
}
418
419
struct sys_timer exynos4_timer = {
420
.init = exynos4_timer_init,
421
};
422
423