Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/arm/mach-lpc32xx/clock.c
10817 views
1
/*
2
* arch/arm/mach-lpc32xx/clock.c
3
*
4
* Author: Kevin Wells <[email protected]>
5
*
6
* Copyright (C) 2010 NXP Semiconductors
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU General Public License as published by
10
* the Free Software Foundation; either version 2 of the License, or
11
* (at your option) any later version.
12
*
13
* This program is distributed in the hope that it will be useful,
14
* but WITHOUT ANY WARRANTY; without even the implied warranty of
15
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16
* GNU General Public License for more details.
17
*/
18
19
/*
20
* LPC32xx clock management driver overview
21
*
22
* The LPC32XX contains a number of high level system clocks that can be
23
* generated from different sources. These system clocks are used to
24
* generate the CPU and bus rates and the individual peripheral clocks in
25
* the system. When Linux is started by the boot loader, the system
26
* clocks are already running. Stopping a system clock during normal
27
* Linux operation should never be attempted, as peripherals that require
28
* those clocks will quit working (ie, DRAM).
29
*
30
* The LPC32xx high level clock tree looks as follows. Clocks marked with
31
* an asterisk are always on and cannot be disabled. Clocks marked with
32
* an ampersand can only be disabled in CPU suspend mode. Clocks marked
33
* with a caret are always on if it is the selected clock for the SYSCLK
34
* source. The clock that isn't used for SYSCLK can be enabled and
35
* disabled normally.
36
* 32KHz oscillator*
37
* / | \
38
* RTC* PLL397^ TOUCH
39
* /
40
* Main oscillator^ /
41
* | \ /
42
* | SYSCLK&
43
* | \
44
* | \
45
* USB_PLL HCLK_PLL&
46
* | | |
47
* USB host/device PCLK& |
48
* | |
49
* Peripherals
50
*
51
* The CPU and chip bus rates are derived from the HCLK PLL, which can
52
* generate various clock rates up to 266MHz and beyond. The internal bus
53
* rates (PCLK and HCLK) are generated from dividers based on the HCLK
54
* PLL rate. HCLK can be a ratio of 1:1, 1:2, or 1:4 or HCLK PLL rate,
55
* while PCLK can be 1:1 to 1:32 of HCLK PLL rate. Most peripherals high
56
* level clocks are based on either HCLK or PCLK, but have their own
57
* dividers as part of the IP itself. Because of this, the system clock
58
* rates should not be changed.
59
*
60
* The HCLK PLL is clocked from SYSCLK, which can be derived from the
61
* main oscillator or PLL397. PLL397 generates a rate that is 397 times
62
* the 32KHz oscillator rate. The main oscillator runs at the selected
63
* oscillator/crystal rate on the mosc_in pin of the LPC32xx. This rate
64
* is normally 13MHz, but depends on the selection of external crystals
65
* or oscillators. If USB operation is required, the main oscillator must
66
* be used in the system.
67
*
68
* Switching SYSCLK between sources during normal Linux operation is not
69
* supported. SYSCLK is preset in the bootloader. Because of the
70
* complexities of clock management during clock frequency changes,
71
* there are some limitations to the clock driver explained below:
72
* - The PLL397 and main oscillator can be enabled and disabled by the
73
* clk_enable() and clk_disable() functions unless SYSCLK is based
74
* on that clock. This allows the other oscillator that isn't driving
75
* the HCLK PLL to be used as another system clock that can be routed
76
* to an external pin.
77
* - The muxed SYSCLK input and HCLK_PLL rate cannot be changed with
78
* this driver.
79
* - HCLK and PCLK rates cannot be changed as part of this driver.
80
* - Most peripherals have their own dividers are part of the peripheral
81
* block. Changing SYSCLK, HCLK PLL, HCLK, or PCLK sources or rates
82
* will also impact the individual peripheral rates.
83
*/
84
85
#include <linux/kernel.h>
86
#include <linux/list.h>
87
#include <linux/errno.h>
88
#include <linux/device.h>
89
#include <linux/err.h>
90
#include <linux/clk.h>
91
#include <linux/amba/bus.h>
92
#include <linux/amba/clcd.h>
93
#include <linux/clkdev.h>
94
95
#include <mach/hardware.h>
96
#include <mach/platform.h>
97
#include "clock.h"
98
#include "common.h"
99
100
static struct clk clk_armpll;
101
static struct clk clk_usbpll;
102
static DEFINE_MUTEX(clkm_lock);
103
104
/*
105
* Post divider values for PLLs based on selected register value
106
*/
107
static const u32 pll_postdivs[4] = {1, 2, 4, 8};
108
109
static unsigned long local_return_parent_rate(struct clk *clk)
110
{
111
/*
112
* If a clock has a rate of 0, then it inherits it's parent
113
* clock rate
114
*/
115
while (clk->rate == 0)
116
clk = clk->parent;
117
118
return clk->rate;
119
}
120
121
/* 32KHz clock has a fixed rate and is not stoppable */
122
static struct clk osc_32KHz = {
123
.rate = LPC32XX_CLOCK_OSC_FREQ,
124
.get_rate = local_return_parent_rate,
125
};
126
127
static int local_pll397_enable(struct clk *clk, int enable)
128
{
129
u32 reg;
130
unsigned long timeout = 1 + msecs_to_jiffies(10);
131
132
reg = __raw_readl(LPC32XX_CLKPWR_PLL397_CTRL);
133
134
if (enable == 0) {
135
reg |= LPC32XX_CLKPWR_SYSCTRL_PLL397_DIS;
136
__raw_writel(reg, LPC32XX_CLKPWR_PLL397_CTRL);
137
} else {
138
/* Enable PLL397 */
139
reg &= ~LPC32XX_CLKPWR_SYSCTRL_PLL397_DIS;
140
__raw_writel(reg, LPC32XX_CLKPWR_PLL397_CTRL);
141
142
/* Wait for PLL397 lock */
143
while (((__raw_readl(LPC32XX_CLKPWR_PLL397_CTRL) &
144
LPC32XX_CLKPWR_SYSCTRL_PLL397_STS) == 0) &&
145
(timeout > jiffies))
146
cpu_relax();
147
148
if ((__raw_readl(LPC32XX_CLKPWR_PLL397_CTRL) &
149
LPC32XX_CLKPWR_SYSCTRL_PLL397_STS) == 0)
150
return -ENODEV;
151
}
152
153
return 0;
154
}
155
156
static int local_oscmain_enable(struct clk *clk, int enable)
157
{
158
u32 reg;
159
unsigned long timeout = 1 + msecs_to_jiffies(10);
160
161
reg = __raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL);
162
163
if (enable == 0) {
164
reg |= LPC32XX_CLKPWR_MOSC_DISABLE;
165
__raw_writel(reg, LPC32XX_CLKPWR_MAIN_OSC_CTRL);
166
} else {
167
/* Enable main oscillator */
168
reg &= ~LPC32XX_CLKPWR_MOSC_DISABLE;
169
__raw_writel(reg, LPC32XX_CLKPWR_MAIN_OSC_CTRL);
170
171
/* Wait for main oscillator to start */
172
while (((__raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL) &
173
LPC32XX_CLKPWR_MOSC_DISABLE) != 0) &&
174
(timeout > jiffies))
175
cpu_relax();
176
177
if ((__raw_readl(LPC32XX_CLKPWR_MAIN_OSC_CTRL) &
178
LPC32XX_CLKPWR_MOSC_DISABLE) != 0)
179
return -ENODEV;
180
}
181
182
return 0;
183
}
184
185
static struct clk osc_pll397 = {
186
.parent = &osc_32KHz,
187
.enable = local_pll397_enable,
188
.rate = LPC32XX_CLOCK_OSC_FREQ * 397,
189
.get_rate = local_return_parent_rate,
190
};
191
192
static struct clk osc_main = {
193
.enable = local_oscmain_enable,
194
.rate = LPC32XX_MAIN_OSC_FREQ,
195
.get_rate = local_return_parent_rate,
196
};
197
198
static struct clk clk_sys;
199
200
/*
201
* Convert a PLL register value to a PLL output frequency
202
*/
203
u32 clk_get_pllrate_from_reg(u32 inputclk, u32 regval)
204
{
205
struct clk_pll_setup pllcfg;
206
207
pllcfg.cco_bypass_b15 = 0;
208
pllcfg.direct_output_b14 = 0;
209
pllcfg.fdbk_div_ctrl_b13 = 0;
210
if ((regval & LPC32XX_CLKPWR_HCLKPLL_CCO_BYPASS) != 0)
211
pllcfg.cco_bypass_b15 = 1;
212
if ((regval & LPC32XX_CLKPWR_HCLKPLL_POSTDIV_BYPASS) != 0)
213
pllcfg.direct_output_b14 = 1;
214
if ((regval & LPC32XX_CLKPWR_HCLKPLL_FDBK_SEL_FCLK) != 0)
215
pllcfg.fdbk_div_ctrl_b13 = 1;
216
pllcfg.pll_m = 1 + ((regval >> 1) & 0xFF);
217
pllcfg.pll_n = 1 + ((regval >> 9) & 0x3);
218
pllcfg.pll_p = pll_postdivs[((regval >> 11) & 0x3)];
219
220
return clk_check_pll_setup(inputclk, &pllcfg);
221
}
222
223
/*
224
* Setup the HCLK PLL with a PLL structure
225
*/
226
static u32 local_clk_pll_setup(struct clk_pll_setup *PllSetup)
227
{
228
u32 tv, tmp = 0;
229
230
if (PllSetup->analog_on != 0)
231
tmp |= LPC32XX_CLKPWR_HCLKPLL_POWER_UP;
232
if (PllSetup->cco_bypass_b15 != 0)
233
tmp |= LPC32XX_CLKPWR_HCLKPLL_CCO_BYPASS;
234
if (PllSetup->direct_output_b14 != 0)
235
tmp |= LPC32XX_CLKPWR_HCLKPLL_POSTDIV_BYPASS;
236
if (PllSetup->fdbk_div_ctrl_b13 != 0)
237
tmp |= LPC32XX_CLKPWR_HCLKPLL_FDBK_SEL_FCLK;
238
239
tv = ffs(PllSetup->pll_p) - 1;
240
if ((!is_power_of_2(PllSetup->pll_p)) || (tv > 3))
241
return 0;
242
243
tmp |= LPC32XX_CLKPWR_HCLKPLL_POSTDIV_2POW(tv);
244
tmp |= LPC32XX_CLKPWR_HCLKPLL_PREDIV_PLUS1(PllSetup->pll_n - 1);
245
tmp |= LPC32XX_CLKPWR_HCLKPLL_PLLM(PllSetup->pll_m - 1);
246
247
return tmp;
248
}
249
250
/*
251
* Update the ARM core PLL frequency rate variable from the actual PLL setting
252
*/
253
static void local_update_armpll_rate(void)
254
{
255
u32 clkin, pllreg;
256
257
clkin = clk_armpll.parent->rate;
258
pllreg = __raw_readl(LPC32XX_CLKPWR_HCLKPLL_CTRL) & 0x1FFFF;
259
260
clk_armpll.rate = clk_get_pllrate_from_reg(clkin, pllreg);
261
}
262
263
/*
264
* Find a PLL configuration for the selected input frequency
265
*/
266
static u32 local_clk_find_pll_cfg(u32 pllin_freq, u32 target_freq,
267
struct clk_pll_setup *pllsetup)
268
{
269
u32 ifreq, freqtol, m, n, p, fclkout;
270
271
/* Determine frequency tolerance limits */
272
freqtol = target_freq / 250;
273
ifreq = pllin_freq;
274
275
/* Is direct bypass mode possible? */
276
if (abs(pllin_freq - target_freq) <= freqtol) {
277
pllsetup->analog_on = 0;
278
pllsetup->cco_bypass_b15 = 1;
279
pllsetup->direct_output_b14 = 1;
280
pllsetup->fdbk_div_ctrl_b13 = 1;
281
pllsetup->pll_p = pll_postdivs[0];
282
pllsetup->pll_n = 1;
283
pllsetup->pll_m = 1;
284
return clk_check_pll_setup(ifreq, pllsetup);
285
} else if (target_freq <= ifreq) {
286
pllsetup->analog_on = 0;
287
pllsetup->cco_bypass_b15 = 1;
288
pllsetup->direct_output_b14 = 0;
289
pllsetup->fdbk_div_ctrl_b13 = 1;
290
pllsetup->pll_n = 1;
291
pllsetup->pll_m = 1;
292
for (p = 0; p <= 3; p++) {
293
pllsetup->pll_p = pll_postdivs[p];
294
fclkout = clk_check_pll_setup(ifreq, pllsetup);
295
if (abs(target_freq - fclkout) <= freqtol)
296
return fclkout;
297
}
298
}
299
300
/* Is direct mode possible? */
301
pllsetup->analog_on = 1;
302
pllsetup->cco_bypass_b15 = 0;
303
pllsetup->direct_output_b14 = 1;
304
pllsetup->fdbk_div_ctrl_b13 = 0;
305
pllsetup->pll_p = pll_postdivs[0];
306
for (m = 1; m <= 256; m++) {
307
for (n = 1; n <= 4; n++) {
308
/* Compute output frequency for this value */
309
pllsetup->pll_n = n;
310
pllsetup->pll_m = m;
311
fclkout = clk_check_pll_setup(ifreq,
312
pllsetup);
313
if (abs(target_freq - fclkout) <=
314
freqtol)
315
return fclkout;
316
}
317
}
318
319
/* Is integer mode possible? */
320
pllsetup->analog_on = 1;
321
pllsetup->cco_bypass_b15 = 0;
322
pllsetup->direct_output_b14 = 0;
323
pllsetup->fdbk_div_ctrl_b13 = 1;
324
for (m = 1; m <= 256; m++) {
325
for (n = 1; n <= 4; n++) {
326
for (p = 0; p < 4; p++) {
327
/* Compute output frequency */
328
pllsetup->pll_p = pll_postdivs[p];
329
pllsetup->pll_n = n;
330
pllsetup->pll_m = m;
331
fclkout = clk_check_pll_setup(
332
ifreq, pllsetup);
333
if (abs(target_freq - fclkout) <= freqtol)
334
return fclkout;
335
}
336
}
337
}
338
339
/* Try non-integer mode */
340
pllsetup->analog_on = 1;
341
pllsetup->cco_bypass_b15 = 0;
342
pllsetup->direct_output_b14 = 0;
343
pllsetup->fdbk_div_ctrl_b13 = 0;
344
for (m = 1; m <= 256; m++) {
345
for (n = 1; n <= 4; n++) {
346
for (p = 0; p < 4; p++) {
347
/* Compute output frequency */
348
pllsetup->pll_p = pll_postdivs[p];
349
pllsetup->pll_n = n;
350
pllsetup->pll_m = m;
351
fclkout = clk_check_pll_setup(
352
ifreq, pllsetup);
353
if (abs(target_freq - fclkout) <= freqtol)
354
return fclkout;
355
}
356
}
357
}
358
359
return 0;
360
}
361
362
static struct clk clk_armpll = {
363
.parent = &clk_sys,
364
.get_rate = local_return_parent_rate,
365
};
366
367
/*
368
* Setup the USB PLL with a PLL structure
369
*/
370
static u32 local_clk_usbpll_setup(struct clk_pll_setup *pHCLKPllSetup)
371
{
372
u32 reg, tmp = local_clk_pll_setup(pHCLKPllSetup);
373
374
reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL) & ~0x1FFFF;
375
reg |= tmp;
376
__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
377
378
return clk_check_pll_setup(clk_usbpll.parent->rate,
379
pHCLKPllSetup);
380
}
381
382
static int local_usbpll_enable(struct clk *clk, int enable)
383
{
384
u32 reg;
385
int ret = -ENODEV;
386
unsigned long timeout = 1 + msecs_to_jiffies(10);
387
388
reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
389
390
if (enable == 0) {
391
reg &= ~(LPC32XX_CLKPWR_USBCTRL_CLK_EN1 |
392
LPC32XX_CLKPWR_USBCTRL_CLK_EN2);
393
__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
394
} else if (reg & LPC32XX_CLKPWR_USBCTRL_PLL_PWRUP) {
395
reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN1;
396
__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
397
398
/* Wait for PLL lock */
399
while ((timeout > jiffies) & (ret == -ENODEV)) {
400
reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
401
if (reg & LPC32XX_CLKPWR_USBCTRL_PLL_STS)
402
ret = 0;
403
}
404
405
if (ret == 0) {
406
reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN2;
407
__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
408
}
409
}
410
411
return ret;
412
}
413
414
static unsigned long local_usbpll_round_rate(struct clk *clk,
415
unsigned long rate)
416
{
417
u32 clkin, usbdiv;
418
struct clk_pll_setup pllsetup;
419
420
/*
421
* Unlike other clocks, this clock has a KHz input rate, so bump
422
* it up to work with the PLL function
423
*/
424
rate = rate * 1000;
425
426
clkin = clk->parent->rate;
427
usbdiv = (__raw_readl(LPC32XX_CLKPWR_USBCLK_PDIV) &
428
LPC32XX_CLKPWR_USBPDIV_PLL_MASK) + 1;
429
clkin = clkin / usbdiv;
430
431
/* Try to find a good rate setup */
432
if (local_clk_find_pll_cfg(clkin, rate, &pllsetup) == 0)
433
return 0;
434
435
return clk_check_pll_setup(clkin, &pllsetup);
436
}
437
438
static int local_usbpll_set_rate(struct clk *clk, unsigned long rate)
439
{
440
u32 clkin, reg, usbdiv;
441
struct clk_pll_setup pllsetup;
442
443
/*
444
* Unlike other clocks, this clock has a KHz input rate, so bump
445
* it up to work with the PLL function
446
*/
447
rate = rate * 1000;
448
449
clkin = clk->get_rate(clk);
450
usbdiv = (__raw_readl(LPC32XX_CLKPWR_USBCLK_PDIV) &
451
LPC32XX_CLKPWR_USBPDIV_PLL_MASK) + 1;
452
clkin = clkin / usbdiv;
453
454
/* Try to find a good rate setup */
455
if (local_clk_find_pll_cfg(clkin, rate, &pllsetup) == 0)
456
return -EINVAL;
457
458
local_usbpll_enable(clk, 0);
459
460
reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
461
reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN1;
462
__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
463
464
pllsetup.analog_on = 1;
465
local_clk_usbpll_setup(&pllsetup);
466
467
clk->rate = clk_check_pll_setup(clkin, &pllsetup);
468
469
reg = __raw_readl(LPC32XX_CLKPWR_USB_CTRL);
470
reg |= LPC32XX_CLKPWR_USBCTRL_CLK_EN2;
471
__raw_writel(reg, LPC32XX_CLKPWR_USB_CTRL);
472
473
return 0;
474
}
475
476
static struct clk clk_usbpll = {
477
.parent = &osc_main,
478
.set_rate = local_usbpll_set_rate,
479
.enable = local_usbpll_enable,
480
.rate = 48000, /* In KHz */
481
.get_rate = local_return_parent_rate,
482
.round_rate = local_usbpll_round_rate,
483
};
484
485
static u32 clk_get_hclk_div(void)
486
{
487
static const u32 hclkdivs[4] = {1, 2, 4, 4};
488
return hclkdivs[LPC32XX_CLKPWR_HCLKDIV_DIV_2POW(
489
__raw_readl(LPC32XX_CLKPWR_HCLK_DIV))];
490
}
491
492
static struct clk clk_hclk = {
493
.parent = &clk_armpll,
494
.get_rate = local_return_parent_rate,
495
};
496
497
static struct clk clk_pclk = {
498
.parent = &clk_armpll,
499
.get_rate = local_return_parent_rate,
500
};
501
502
static int local_onoff_enable(struct clk *clk, int enable)
503
{
504
u32 tmp;
505
506
tmp = __raw_readl(clk->enable_reg);
507
508
if (enable == 0)
509
tmp &= ~clk->enable_mask;
510
else
511
tmp |= clk->enable_mask;
512
513
__raw_writel(tmp, clk->enable_reg);
514
515
return 0;
516
}
517
518
/* Peripheral clock sources */
519
static struct clk clk_timer0 = {
520
.parent = &clk_pclk,
521
.enable = local_onoff_enable,
522
.enable_reg = LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
523
.enable_mask = LPC32XX_CLKPWR_TMRPWMCLK_TIMER0_EN,
524
.get_rate = local_return_parent_rate,
525
};
526
static struct clk clk_timer1 = {
527
.parent = &clk_pclk,
528
.enable = local_onoff_enable,
529
.enable_reg = LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
530
.enable_mask = LPC32XX_CLKPWR_TMRPWMCLK_TIMER1_EN,
531
.get_rate = local_return_parent_rate,
532
};
533
static struct clk clk_timer2 = {
534
.parent = &clk_pclk,
535
.enable = local_onoff_enable,
536
.enable_reg = LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
537
.enable_mask = LPC32XX_CLKPWR_TMRPWMCLK_TIMER2_EN,
538
.get_rate = local_return_parent_rate,
539
};
540
static struct clk clk_timer3 = {
541
.parent = &clk_pclk,
542
.enable = local_onoff_enable,
543
.enable_reg = LPC32XX_CLKPWR_TIMERS_PWMS_CLK_CTRL_1,
544
.enable_mask = LPC32XX_CLKPWR_TMRPWMCLK_TIMER3_EN,
545
.get_rate = local_return_parent_rate,
546
};
547
static struct clk clk_wdt = {
548
.parent = &clk_pclk,
549
.enable = local_onoff_enable,
550
.enable_reg = LPC32XX_CLKPWR_TIMER_CLK_CTRL,
551
.enable_mask = LPC32XX_CLKPWR_PWMCLK_WDOG_EN,
552
.get_rate = local_return_parent_rate,
553
};
554
static struct clk clk_vfp9 = {
555
.parent = &clk_pclk,
556
.enable = local_onoff_enable,
557
.enable_reg = LPC32XX_CLKPWR_DEBUG_CTRL,
558
.enable_mask = LPC32XX_CLKPWR_VFP_CLOCK_ENABLE_BIT,
559
.get_rate = local_return_parent_rate,
560
};
561
static struct clk clk_dma = {
562
.parent = &clk_hclk,
563
.enable = local_onoff_enable,
564
.enable_reg = LPC32XX_CLKPWR_DMA_CLK_CTRL,
565
.enable_mask = LPC32XX_CLKPWR_DMACLKCTRL_CLK_EN,
566
.get_rate = local_return_parent_rate,
567
};
568
569
static struct clk clk_uart3 = {
570
.parent = &clk_pclk,
571
.enable = local_onoff_enable,
572
.enable_reg = LPC32XX_CLKPWR_UART_CLK_CTRL,
573
.enable_mask = LPC32XX_CLKPWR_UARTCLKCTRL_UART3_EN,
574
.get_rate = local_return_parent_rate,
575
};
576
577
static struct clk clk_uart4 = {
578
.parent = &clk_pclk,
579
.enable = local_onoff_enable,
580
.enable_reg = LPC32XX_CLKPWR_UART_CLK_CTRL,
581
.enable_mask = LPC32XX_CLKPWR_UARTCLKCTRL_UART4_EN,
582
.get_rate = local_return_parent_rate,
583
};
584
585
static struct clk clk_uart5 = {
586
.parent = &clk_pclk,
587
.enable = local_onoff_enable,
588
.enable_reg = LPC32XX_CLKPWR_UART_CLK_CTRL,
589
.enable_mask = LPC32XX_CLKPWR_UARTCLKCTRL_UART5_EN,
590
.get_rate = local_return_parent_rate,
591
};
592
593
static struct clk clk_uart6 = {
594
.parent = &clk_pclk,
595
.enable = local_onoff_enable,
596
.enable_reg = LPC32XX_CLKPWR_UART_CLK_CTRL,
597
.enable_mask = LPC32XX_CLKPWR_UARTCLKCTRL_UART6_EN,
598
.get_rate = local_return_parent_rate,
599
};
600
601
static struct clk clk_i2c0 = {
602
.parent = &clk_hclk,
603
.enable = local_onoff_enable,
604
.enable_reg = LPC32XX_CLKPWR_I2C_CLK_CTRL,
605
.enable_mask = LPC32XX_CLKPWR_I2CCLK_I2C1CLK_EN,
606
.get_rate = local_return_parent_rate,
607
};
608
609
static struct clk clk_i2c1 = {
610
.parent = &clk_hclk,
611
.enable = local_onoff_enable,
612
.enable_reg = LPC32XX_CLKPWR_I2C_CLK_CTRL,
613
.enable_mask = LPC32XX_CLKPWR_I2CCLK_I2C2CLK_EN,
614
.get_rate = local_return_parent_rate,
615
};
616
617
static struct clk clk_i2c2 = {
618
.parent = &clk_pclk,
619
.enable = local_onoff_enable,
620
.enable_reg = io_p2v(LPC32XX_USB_BASE + 0xFF4),
621
.enable_mask = 0x4,
622
.get_rate = local_return_parent_rate,
623
};
624
625
static struct clk clk_ssp0 = {
626
.parent = &clk_hclk,
627
.enable = local_onoff_enable,
628
.enable_reg = LPC32XX_CLKPWR_SSP_CLK_CTRL,
629
.enable_mask = LPC32XX_CLKPWR_SSPCTRL_SSPCLK0_EN,
630
.get_rate = local_return_parent_rate,
631
};
632
633
static struct clk clk_ssp1 = {
634
.parent = &clk_hclk,
635
.enable = local_onoff_enable,
636
.enable_reg = LPC32XX_CLKPWR_SSP_CLK_CTRL,
637
.enable_mask = LPC32XX_CLKPWR_SSPCTRL_SSPCLK1_EN,
638
.get_rate = local_return_parent_rate,
639
};
640
641
static struct clk clk_kscan = {
642
.parent = &osc_32KHz,
643
.enable = local_onoff_enable,
644
.enable_reg = LPC32XX_CLKPWR_KEY_CLK_CTRL,
645
.enable_mask = LPC32XX_CLKPWR_KEYCLKCTRL_CLK_EN,
646
.get_rate = local_return_parent_rate,
647
};
648
649
static struct clk clk_nand = {
650
.parent = &clk_hclk,
651
.enable = local_onoff_enable,
652
.enable_reg = LPC32XX_CLKPWR_NAND_CLK_CTRL,
653
.enable_mask = LPC32XX_CLKPWR_NANDCLK_SLCCLK_EN,
654
.get_rate = local_return_parent_rate,
655
};
656
657
static struct clk clk_i2s0 = {
658
.parent = &clk_hclk,
659
.enable = local_onoff_enable,
660
.enable_reg = LPC32XX_CLKPWR_I2S_CLK_CTRL,
661
.enable_mask = LPC32XX_CLKPWR_I2SCTRL_I2SCLK0_EN,
662
.get_rate = local_return_parent_rate,
663
};
664
665
static struct clk clk_i2s1 = {
666
.parent = &clk_hclk,
667
.enable = local_onoff_enable,
668
.enable_reg = LPC32XX_CLKPWR_I2S_CLK_CTRL,
669
.enable_mask = LPC32XX_CLKPWR_I2SCTRL_I2SCLK1_EN,
670
.get_rate = local_return_parent_rate,
671
};
672
673
static struct clk clk_net = {
674
.parent = &clk_hclk,
675
.enable = local_onoff_enable,
676
.enable_reg = LPC32XX_CLKPWR_MACCLK_CTRL,
677
.enable_mask = (LPC32XX_CLKPWR_MACCTRL_DMACLK_EN |
678
LPC32XX_CLKPWR_MACCTRL_MMIOCLK_EN |
679
LPC32XX_CLKPWR_MACCTRL_HRCCLK_EN),
680
.get_rate = local_return_parent_rate,
681
};
682
683
static struct clk clk_rtc = {
684
.parent = &osc_32KHz,
685
.rate = 1, /* 1 Hz */
686
.get_rate = local_return_parent_rate,
687
};
688
689
static struct clk clk_usbd = {
690
.parent = &clk_usbpll,
691
.enable = local_onoff_enable,
692
.enable_reg = LPC32XX_CLKPWR_USB_CTRL,
693
.enable_mask = LPC32XX_CLKPWR_USBCTRL_HCLK_EN,
694
.get_rate = local_return_parent_rate,
695
};
696
697
static int tsc_onoff_enable(struct clk *clk, int enable)
698
{
699
u32 tmp;
700
701
/* Make sure 32KHz clock is the selected clock */
702
tmp = __raw_readl(LPC32XX_CLKPWR_ADC_CLK_CTRL_1);
703
tmp &= ~LPC32XX_CLKPWR_ADCCTRL1_PCLK_SEL;
704
__raw_writel(tmp, LPC32XX_CLKPWR_ADC_CLK_CTRL_1);
705
706
if (enable == 0)
707
__raw_writel(0, clk->enable_reg);
708
else
709
__raw_writel(clk->enable_mask, clk->enable_reg);
710
711
return 0;
712
}
713
714
static struct clk clk_tsc = {
715
.parent = &osc_32KHz,
716
.enable = tsc_onoff_enable,
717
.enable_reg = LPC32XX_CLKPWR_ADC_CLK_CTRL,
718
.enable_mask = LPC32XX_CLKPWR_ADC32CLKCTRL_CLK_EN,
719
.get_rate = local_return_parent_rate,
720
};
721
722
static int mmc_onoff_enable(struct clk *clk, int enable)
723
{
724
u32 tmp;
725
726
tmp = __raw_readl(LPC32XX_CLKPWR_MS_CTRL) &
727
~LPC32XX_CLKPWR_MSCARD_SDCARD_EN;
728
729
/* If rate is 0, disable clock */
730
if (enable != 0)
731
tmp |= LPC32XX_CLKPWR_MSCARD_SDCARD_EN;
732
733
__raw_writel(tmp, LPC32XX_CLKPWR_MS_CTRL);
734
735
return 0;
736
}
737
738
static unsigned long mmc_get_rate(struct clk *clk)
739
{
740
u32 div, rate, oldclk;
741
742
/* The MMC clock must be on when accessing an MMC register */
743
oldclk = __raw_readl(LPC32XX_CLKPWR_MS_CTRL);
744
__raw_writel(oldclk | LPC32XX_CLKPWR_MSCARD_SDCARD_EN,
745
LPC32XX_CLKPWR_MS_CTRL);
746
div = __raw_readl(LPC32XX_CLKPWR_MS_CTRL);
747
__raw_writel(oldclk, LPC32XX_CLKPWR_MS_CTRL);
748
749
/* Get the parent clock rate */
750
rate = clk->parent->get_rate(clk->parent);
751
752
/* Get the MMC controller clock divider value */
753
div = div & LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(0xf);
754
755
if (!div)
756
div = 1;
757
758
return rate / div;
759
}
760
761
static unsigned long mmc_round_rate(struct clk *clk, unsigned long rate)
762
{
763
unsigned long div, prate;
764
765
/* Get the parent clock rate */
766
prate = clk->parent->get_rate(clk->parent);
767
768
if (rate >= prate)
769
return prate;
770
771
div = prate / rate;
772
if (div > 0xf)
773
div = 0xf;
774
775
return prate / div;
776
}
777
778
static int mmc_set_rate(struct clk *clk, unsigned long rate)
779
{
780
u32 oldclk, tmp;
781
unsigned long prate, div, crate = mmc_round_rate(clk, rate);
782
783
prate = clk->parent->get_rate(clk->parent);
784
785
div = prate / crate;
786
787
/* The MMC clock must be on when accessing an MMC register */
788
oldclk = __raw_readl(LPC32XX_CLKPWR_MS_CTRL);
789
__raw_writel(oldclk | LPC32XX_CLKPWR_MSCARD_SDCARD_EN,
790
LPC32XX_CLKPWR_MS_CTRL);
791
tmp = __raw_readl(LPC32XX_CLKPWR_MS_CTRL) &
792
~LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(0xf);
793
tmp |= LPC32XX_CLKPWR_MSCARD_SDCARD_DIV(div);
794
__raw_writel(tmp, LPC32XX_CLKPWR_MS_CTRL);
795
796
__raw_writel(oldclk, LPC32XX_CLKPWR_MS_CTRL);
797
798
return 0;
799
}
800
801
static struct clk clk_mmc = {
802
.parent = &clk_armpll,
803
.set_rate = mmc_set_rate,
804
.get_rate = mmc_get_rate,
805
.round_rate = mmc_round_rate,
806
.enable = mmc_onoff_enable,
807
.enable_reg = LPC32XX_CLKPWR_MS_CTRL,
808
.enable_mask = LPC32XX_CLKPWR_MSCARD_SDCARD_EN,
809
};
810
811
static unsigned long clcd_get_rate(struct clk *clk)
812
{
813
u32 tmp, div, rate, oldclk;
814
815
/* The LCD clock must be on when accessing an LCD register */
816
oldclk = __raw_readl(LPC32XX_CLKPWR_LCDCLK_CTRL);
817
__raw_writel(oldclk | LPC32XX_CLKPWR_LCDCTRL_CLK_EN,
818
LPC32XX_CLKPWR_LCDCLK_CTRL);
819
tmp = __raw_readl(io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2));
820
__raw_writel(oldclk, LPC32XX_CLKPWR_LCDCLK_CTRL);
821
822
rate = clk->parent->get_rate(clk->parent);
823
824
/* Only supports internal clocking */
825
if (tmp & TIM2_BCD)
826
return rate;
827
828
div = (tmp & 0x1F) | ((tmp & 0xF8) >> 22);
829
tmp = rate / (2 + div);
830
831
return tmp;
832
}
833
834
static int clcd_set_rate(struct clk *clk, unsigned long rate)
835
{
836
u32 tmp, prate, div, oldclk;
837
838
/* The LCD clock must be on when accessing an LCD register */
839
oldclk = __raw_readl(LPC32XX_CLKPWR_LCDCLK_CTRL);
840
__raw_writel(oldclk | LPC32XX_CLKPWR_LCDCTRL_CLK_EN,
841
LPC32XX_CLKPWR_LCDCLK_CTRL);
842
843
tmp = __raw_readl(io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2)) | TIM2_BCD;
844
prate = clk->parent->get_rate(clk->parent);
845
846
if (rate < prate) {
847
/* Find closest divider */
848
div = prate / rate;
849
if (div >= 2) {
850
div -= 2;
851
tmp &= ~TIM2_BCD;
852
}
853
854
tmp &= ~(0xF800001F);
855
tmp |= (div & 0x1F);
856
tmp |= (((div >> 5) & 0x1F) << 27);
857
}
858
859
__raw_writel(tmp, io_p2v(LPC32XX_LCD_BASE + CLCD_TIM2));
860
__raw_writel(oldclk, LPC32XX_CLKPWR_LCDCLK_CTRL);
861
862
return 0;
863
}
864
865
static unsigned long clcd_round_rate(struct clk *clk, unsigned long rate)
866
{
867
u32 prate, div;
868
869
prate = clk->parent->get_rate(clk->parent);
870
871
if (rate >= prate)
872
rate = prate;
873
else {
874
div = prate / rate;
875
if (div > 0x3ff)
876
div = 0x3ff;
877
878
rate = prate / div;
879
}
880
881
return rate;
882
}
883
884
static struct clk clk_lcd = {
885
.parent = &clk_hclk,
886
.set_rate = clcd_set_rate,
887
.get_rate = clcd_get_rate,
888
.round_rate = clcd_round_rate,
889
.enable = local_onoff_enable,
890
.enable_reg = LPC32XX_CLKPWR_LCDCLK_CTRL,
891
.enable_mask = LPC32XX_CLKPWR_LCDCTRL_CLK_EN,
892
};
893
894
static inline void clk_lock(void)
895
{
896
mutex_lock(&clkm_lock);
897
}
898
899
static inline void clk_unlock(void)
900
{
901
mutex_unlock(&clkm_lock);
902
}
903
904
static void local_clk_disable(struct clk *clk)
905
{
906
WARN_ON(clk->usecount == 0);
907
908
/* Don't attempt to disable clock if it has no users */
909
if (clk->usecount > 0) {
910
clk->usecount--;
911
912
/* Only disable clock when it has no more users */
913
if ((clk->usecount == 0) && (clk->enable))
914
clk->enable(clk, 0);
915
916
/* Check parent clocks, they may need to be disabled too */
917
if (clk->parent)
918
local_clk_disable(clk->parent);
919
}
920
}
921
922
static int local_clk_enable(struct clk *clk)
923
{
924
int ret = 0;
925
926
/* Enable parent clocks first and update use counts */
927
if (clk->parent)
928
ret = local_clk_enable(clk->parent);
929
930
if (!ret) {
931
/* Only enable clock if it's currently disabled */
932
if ((clk->usecount == 0) && (clk->enable))
933
ret = clk->enable(clk, 1);
934
935
if (!ret)
936
clk->usecount++;
937
else if (clk->parent)
938
local_clk_disable(clk->parent);
939
}
940
941
return ret;
942
}
943
944
/*
945
* clk_enable - inform the system when the clock source should be running.
946
*/
947
int clk_enable(struct clk *clk)
948
{
949
int ret;
950
951
clk_lock();
952
ret = local_clk_enable(clk);
953
clk_unlock();
954
955
return ret;
956
}
957
EXPORT_SYMBOL(clk_enable);
958
959
/*
960
* clk_disable - inform the system when the clock source is no longer required
961
*/
962
void clk_disable(struct clk *clk)
963
{
964
clk_lock();
965
local_clk_disable(clk);
966
clk_unlock();
967
}
968
EXPORT_SYMBOL(clk_disable);
969
970
/*
971
* clk_get_rate - obtain the current clock rate (in Hz) for a clock source
972
*/
973
unsigned long clk_get_rate(struct clk *clk)
974
{
975
unsigned long rate;
976
977
clk_lock();
978
rate = clk->get_rate(clk);
979
clk_unlock();
980
981
return rate;
982
}
983
EXPORT_SYMBOL(clk_get_rate);
984
985
/*
986
* clk_set_rate - set the clock rate for a clock source
987
*/
988
int clk_set_rate(struct clk *clk, unsigned long rate)
989
{
990
int ret = -EINVAL;
991
992
/*
993
* Most system clocks can only be enabled or disabled, with
994
* the actual rate set as part of the peripheral dividers
995
* instead of high level clock control
996
*/
997
if (clk->set_rate) {
998
clk_lock();
999
ret = clk->set_rate(clk, rate);
1000
clk_unlock();
1001
}
1002
1003
return ret;
1004
}
1005
EXPORT_SYMBOL(clk_set_rate);
1006
1007
/*
1008
* clk_round_rate - adjust a rate to the exact rate a clock can provide
1009
*/
1010
long clk_round_rate(struct clk *clk, unsigned long rate)
1011
{
1012
clk_lock();
1013
1014
if (clk->round_rate)
1015
rate = clk->round_rate(clk, rate);
1016
else
1017
rate = clk->get_rate(clk);
1018
1019
clk_unlock();
1020
1021
return rate;
1022
}
1023
EXPORT_SYMBOL(clk_round_rate);
1024
1025
/*
1026
* clk_set_parent - set the parent clock source for this clock
1027
*/
1028
int clk_set_parent(struct clk *clk, struct clk *parent)
1029
{
1030
/* Clock re-parenting is not supported */
1031
return -EINVAL;
1032
}
1033
EXPORT_SYMBOL(clk_set_parent);
1034
1035
/*
1036
* clk_get_parent - get the parent clock source for this clock
1037
*/
1038
struct clk *clk_get_parent(struct clk *clk)
1039
{
1040
return clk->parent;
1041
}
1042
EXPORT_SYMBOL(clk_get_parent);
1043
1044
#define _REGISTER_CLOCK(d, n, c) \
1045
{ \
1046
.dev_id = (d), \
1047
.con_id = (n), \
1048
.clk = &(c), \
1049
},
1050
1051
static struct clk_lookup lookups[] = {
1052
_REGISTER_CLOCK(NULL, "osc_32KHz", osc_32KHz)
1053
_REGISTER_CLOCK(NULL, "osc_pll397", osc_pll397)
1054
_REGISTER_CLOCK(NULL, "osc_main", osc_main)
1055
_REGISTER_CLOCK(NULL, "sys_ck", clk_sys)
1056
_REGISTER_CLOCK(NULL, "arm_pll_ck", clk_armpll)
1057
_REGISTER_CLOCK(NULL, "ck_pll5", clk_usbpll)
1058
_REGISTER_CLOCK(NULL, "hclk_ck", clk_hclk)
1059
_REGISTER_CLOCK(NULL, "pclk_ck", clk_pclk)
1060
_REGISTER_CLOCK(NULL, "timer0_ck", clk_timer0)
1061
_REGISTER_CLOCK(NULL, "timer1_ck", clk_timer1)
1062
_REGISTER_CLOCK(NULL, "timer2_ck", clk_timer2)
1063
_REGISTER_CLOCK(NULL, "timer3_ck", clk_timer3)
1064
_REGISTER_CLOCK(NULL, "vfp9_ck", clk_vfp9)
1065
_REGISTER_CLOCK(NULL, "clk_dmac", clk_dma)
1066
_REGISTER_CLOCK("pnx4008-watchdog", NULL, clk_wdt)
1067
_REGISTER_CLOCK(NULL, "uart3_ck", clk_uart3)
1068
_REGISTER_CLOCK(NULL, "uart4_ck", clk_uart4)
1069
_REGISTER_CLOCK(NULL, "uart5_ck", clk_uart5)
1070
_REGISTER_CLOCK(NULL, "uart6_ck", clk_uart6)
1071
_REGISTER_CLOCK("pnx-i2c.0", NULL, clk_i2c0)
1072
_REGISTER_CLOCK("pnx-i2c.1", NULL, clk_i2c1)
1073
_REGISTER_CLOCK("pnx-i2c.2", NULL, clk_i2c2)
1074
_REGISTER_CLOCK("dev:ssp0", NULL, clk_ssp0)
1075
_REGISTER_CLOCK("dev:ssp1", NULL, clk_ssp1)
1076
_REGISTER_CLOCK("lpc32xx_keys.0", NULL, clk_kscan)
1077
_REGISTER_CLOCK("lpc32xx-nand.0", "nand_ck", clk_nand)
1078
_REGISTER_CLOCK("tbd", "i2s0_ck", clk_i2s0)
1079
_REGISTER_CLOCK("tbd", "i2s1_ck", clk_i2s1)
1080
_REGISTER_CLOCK("lpc32xx-ts", NULL, clk_tsc)
1081
_REGISTER_CLOCK("dev:mmc0", "MCLK", clk_mmc)
1082
_REGISTER_CLOCK("lpc-net.0", NULL, clk_net)
1083
_REGISTER_CLOCK("dev:clcd", NULL, clk_lcd)
1084
_REGISTER_CLOCK("lpc32xx_udc", "ck_usbd", clk_usbd)
1085
_REGISTER_CLOCK("lpc32xx_rtc", NULL, clk_rtc)
1086
};
1087
1088
static int __init clk_init(void)
1089
{
1090
int i;
1091
1092
for (i = 0; i < ARRAY_SIZE(lookups); i++)
1093
clkdev_add(&lookups[i]);
1094
1095
/*
1096
* Setup muxed SYSCLK for HCLK PLL base -this selects the
1097
* parent clock used for the ARM PLL and is used to derive
1098
* the many system clock rates in the device.
1099
*/
1100
if (clk_is_sysclk_mainosc() != 0)
1101
clk_sys.parent = &osc_main;
1102
else
1103
clk_sys.parent = &osc_pll397;
1104
1105
clk_sys.rate = clk_sys.parent->rate;
1106
1107
/* Compute the current ARM PLL and USB PLL frequencies */
1108
local_update_armpll_rate();
1109
1110
/* Compute HCLK and PCLK bus rates */
1111
clk_hclk.rate = clk_hclk.parent->rate / clk_get_hclk_div();
1112
clk_pclk.rate = clk_pclk.parent->rate / clk_get_pclk_div();
1113
1114
/*
1115
* Enable system clocks - this step is somewhat formal, as the
1116
* clocks are already running, but it does get the clock data
1117
* inline with the actual system state. Never disable these
1118
* clocks as they will only stop if the system is going to sleep.
1119
* In that case, the chip/system power management functions will
1120
* handle clock gating.
1121
*/
1122
if (clk_enable(&clk_hclk) || clk_enable(&clk_pclk))
1123
printk(KERN_ERR "Error enabling system HCLK and PCLK\n");
1124
1125
/*
1126
* Timers 0 and 1 were enabled and are being used by the high
1127
* resolution tick function prior to this driver being initialized.
1128
* Tag them now as used.
1129
*/
1130
if (clk_enable(&clk_timer0) || clk_enable(&clk_timer1))
1131
printk(KERN_ERR "Error enabling timer tick clocks\n");
1132
1133
return 0;
1134
}
1135
core_initcall(clk_init);
1136
1137
1138