Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/arm/mach-msm/gpio-v2.c
10817 views
1
/* Copyright (c) 2010, Code Aurora Forum. All rights reserved.
2
*
3
* This program is free software; you can redistribute it and/or modify
4
* it under the terms of the GNU General Public License version 2 and
5
* only version 2 as published by the Free Software Foundation.
6
*
7
* This program is distributed in the hope that it will be useful,
8
* but WITHOUT ANY WARRANTY; without even the implied warranty of
9
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10
* GNU General Public License for more details.
11
*
12
* You should have received a copy of the GNU General Public License
13
* along with this program; if not, write to the Free Software
14
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
15
* 02110-1301, USA.
16
*
17
*/
18
#define pr_fmt(fmt) "%s: " fmt, __func__
19
20
#include <linux/bitmap.h>
21
#include <linux/bitops.h>
22
#include <linux/gpio.h>
23
#include <linux/init.h>
24
#include <linux/interrupt.h>
25
#include <linux/io.h>
26
#include <linux/irq.h>
27
#include <linux/module.h>
28
#include <linux/platform_device.h>
29
#include <linux/spinlock.h>
30
31
#include <asm/mach/irq.h>
32
33
#include <mach/msm_iomap.h>
34
#include "gpiomux.h"
35
36
/* Bits of interest in the GPIO_IN_OUT register.
37
*/
38
enum {
39
GPIO_IN = 0,
40
GPIO_OUT = 1
41
};
42
43
/* Bits of interest in the GPIO_INTR_STATUS register.
44
*/
45
enum {
46
INTR_STATUS = 0,
47
};
48
49
/* Bits of interest in the GPIO_CFG register.
50
*/
51
enum {
52
GPIO_OE = 9,
53
};
54
55
/* Bits of interest in the GPIO_INTR_CFG register.
56
* When a GPIO triggers, two separate decisions are made, controlled
57
* by two separate flags.
58
*
59
* - First, INTR_RAW_STATUS_EN controls whether or not the GPIO_INTR_STATUS
60
* register for that GPIO will be updated to reflect the triggering of that
61
* gpio. If this bit is 0, this register will not be updated.
62
* - Second, INTR_ENABLE controls whether an interrupt is triggered.
63
*
64
* If INTR_ENABLE is set and INTR_RAW_STATUS_EN is NOT set, an interrupt
65
* can be triggered but the status register will not reflect it.
66
*/
67
enum {
68
INTR_ENABLE = 0,
69
INTR_POL_CTL = 1,
70
INTR_DECT_CTL = 2,
71
INTR_RAW_STATUS_EN = 3,
72
};
73
74
/* Codes of interest in GPIO_INTR_CFG_SU.
75
*/
76
enum {
77
TARGET_PROC_SCORPION = 4,
78
TARGET_PROC_NONE = 7,
79
};
80
81
82
#define GPIO_INTR_CFG_SU(gpio) (MSM_TLMM_BASE + 0x0400 + (0x04 * (gpio)))
83
#define GPIO_CONFIG(gpio) (MSM_TLMM_BASE + 0x1000 + (0x10 * (gpio)))
84
#define GPIO_IN_OUT(gpio) (MSM_TLMM_BASE + 0x1004 + (0x10 * (gpio)))
85
#define GPIO_INTR_CFG(gpio) (MSM_TLMM_BASE + 0x1008 + (0x10 * (gpio)))
86
#define GPIO_INTR_STATUS(gpio) (MSM_TLMM_BASE + 0x100c + (0x10 * (gpio)))
87
88
/**
89
* struct msm_gpio_dev: the MSM8660 SoC GPIO device structure
90
*
91
* @enabled_irqs: a bitmap used to optimize the summary-irq handler. By
92
* keeping track of which gpios are unmasked as irq sources, we avoid
93
* having to do readl calls on hundreds of iomapped registers each time
94
* the summary interrupt fires in order to locate the active interrupts.
95
*
96
* @wake_irqs: a bitmap for tracking which interrupt lines are enabled
97
* as wakeup sources. When the device is suspended, interrupts which are
98
* not wakeup sources are disabled.
99
*
100
* @dual_edge_irqs: a bitmap used to track which irqs are configured
101
* as dual-edge, as this is not supported by the hardware and requires
102
* some special handling in the driver.
103
*/
104
struct msm_gpio_dev {
105
struct gpio_chip gpio_chip;
106
DECLARE_BITMAP(enabled_irqs, NR_GPIO_IRQS);
107
DECLARE_BITMAP(wake_irqs, NR_GPIO_IRQS);
108
DECLARE_BITMAP(dual_edge_irqs, NR_GPIO_IRQS);
109
};
110
111
static DEFINE_SPINLOCK(tlmm_lock);
112
113
static inline struct msm_gpio_dev *to_msm_gpio_dev(struct gpio_chip *chip)
114
{
115
return container_of(chip, struct msm_gpio_dev, gpio_chip);
116
}
117
118
static inline void set_gpio_bits(unsigned n, void __iomem *reg)
119
{
120
writel(readl(reg) | n, reg);
121
}
122
123
static inline void clear_gpio_bits(unsigned n, void __iomem *reg)
124
{
125
writel(readl(reg) & ~n, reg);
126
}
127
128
static int msm_gpio_get(struct gpio_chip *chip, unsigned offset)
129
{
130
return readl(GPIO_IN_OUT(offset)) & BIT(GPIO_IN);
131
}
132
133
static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int val)
134
{
135
writel(val ? BIT(GPIO_OUT) : 0, GPIO_IN_OUT(offset));
136
}
137
138
static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
139
{
140
unsigned long irq_flags;
141
142
spin_lock_irqsave(&tlmm_lock, irq_flags);
143
clear_gpio_bits(BIT(GPIO_OE), GPIO_CONFIG(offset));
144
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
145
return 0;
146
}
147
148
static int msm_gpio_direction_output(struct gpio_chip *chip,
149
unsigned offset,
150
int val)
151
{
152
unsigned long irq_flags;
153
154
spin_lock_irqsave(&tlmm_lock, irq_flags);
155
msm_gpio_set(chip, offset, val);
156
set_gpio_bits(BIT(GPIO_OE), GPIO_CONFIG(offset));
157
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
158
return 0;
159
}
160
161
static int msm_gpio_request(struct gpio_chip *chip, unsigned offset)
162
{
163
return msm_gpiomux_get(chip->base + offset);
164
}
165
166
static void msm_gpio_free(struct gpio_chip *chip, unsigned offset)
167
{
168
msm_gpiomux_put(chip->base + offset);
169
}
170
171
static int msm_gpio_to_irq(struct gpio_chip *chip, unsigned offset)
172
{
173
return MSM_GPIO_TO_INT(chip->base + offset);
174
}
175
176
static inline int msm_irq_to_gpio(struct gpio_chip *chip, unsigned irq)
177
{
178
return irq - MSM_GPIO_TO_INT(chip->base);
179
}
180
181
static struct msm_gpio_dev msm_gpio = {
182
.gpio_chip = {
183
.base = 0,
184
.ngpio = NR_GPIO_IRQS,
185
.direction_input = msm_gpio_direction_input,
186
.direction_output = msm_gpio_direction_output,
187
.get = msm_gpio_get,
188
.set = msm_gpio_set,
189
.to_irq = msm_gpio_to_irq,
190
.request = msm_gpio_request,
191
.free = msm_gpio_free,
192
},
193
};
194
195
/* For dual-edge interrupts in software, since the hardware has no
196
* such support:
197
*
198
* At appropriate moments, this function may be called to flip the polarity
199
* settings of both-edge irq lines to try and catch the next edge.
200
*
201
* The attempt is considered successful if:
202
* - the status bit goes high, indicating that an edge was caught, or
203
* - the input value of the gpio doesn't change during the attempt.
204
* If the value changes twice during the process, that would cause the first
205
* test to fail but would force the second, as two opposite
206
* transitions would cause a detection no matter the polarity setting.
207
*
208
* The do-loop tries to sledge-hammer closed the timing hole between
209
* the initial value-read and the polarity-write - if the line value changes
210
* during that window, an interrupt is lost, the new polarity setting is
211
* incorrect, and the first success test will fail, causing a retry.
212
*
213
* Algorithm comes from Google's msmgpio driver, see mach-msm/gpio.c.
214
*/
215
static void msm_gpio_update_dual_edge_pos(unsigned gpio)
216
{
217
int loop_limit = 100;
218
unsigned val, val2, intstat;
219
220
do {
221
val = readl(GPIO_IN_OUT(gpio)) & BIT(GPIO_IN);
222
if (val)
223
clear_gpio_bits(BIT(INTR_POL_CTL), GPIO_INTR_CFG(gpio));
224
else
225
set_gpio_bits(BIT(INTR_POL_CTL), GPIO_INTR_CFG(gpio));
226
val2 = readl(GPIO_IN_OUT(gpio)) & BIT(GPIO_IN);
227
intstat = readl(GPIO_INTR_STATUS(gpio)) & BIT(INTR_STATUS);
228
if (intstat || val == val2)
229
return;
230
} while (loop_limit-- > 0);
231
pr_err("dual-edge irq failed to stabilize, "
232
"interrupts dropped. %#08x != %#08x\n",
233
val, val2);
234
}
235
236
static void msm_gpio_irq_ack(struct irq_data *d)
237
{
238
int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
239
240
writel(BIT(INTR_STATUS), GPIO_INTR_STATUS(gpio));
241
if (test_bit(gpio, msm_gpio.dual_edge_irqs))
242
msm_gpio_update_dual_edge_pos(gpio);
243
}
244
245
static void msm_gpio_irq_mask(struct irq_data *d)
246
{
247
int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
248
unsigned long irq_flags;
249
250
spin_lock_irqsave(&tlmm_lock, irq_flags);
251
writel(TARGET_PROC_NONE, GPIO_INTR_CFG_SU(gpio));
252
clear_gpio_bits(INTR_RAW_STATUS_EN | INTR_ENABLE, GPIO_INTR_CFG(gpio));
253
__clear_bit(gpio, msm_gpio.enabled_irqs);
254
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
255
}
256
257
static void msm_gpio_irq_unmask(struct irq_data *d)
258
{
259
int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
260
unsigned long irq_flags;
261
262
spin_lock_irqsave(&tlmm_lock, irq_flags);
263
__set_bit(gpio, msm_gpio.enabled_irqs);
264
set_gpio_bits(INTR_RAW_STATUS_EN | INTR_ENABLE, GPIO_INTR_CFG(gpio));
265
writel(TARGET_PROC_SCORPION, GPIO_INTR_CFG_SU(gpio));
266
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
267
}
268
269
static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int flow_type)
270
{
271
int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
272
unsigned long irq_flags;
273
uint32_t bits;
274
275
spin_lock_irqsave(&tlmm_lock, irq_flags);
276
277
bits = readl(GPIO_INTR_CFG(gpio));
278
279
if (flow_type & IRQ_TYPE_EDGE_BOTH) {
280
bits |= BIT(INTR_DECT_CTL);
281
__irq_set_handler_locked(d->irq, handle_edge_irq);
282
if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
283
__set_bit(gpio, msm_gpio.dual_edge_irqs);
284
else
285
__clear_bit(gpio, msm_gpio.dual_edge_irqs);
286
} else {
287
bits &= ~BIT(INTR_DECT_CTL);
288
__irq_set_handler_locked(d->irq, handle_level_irq);
289
__clear_bit(gpio, msm_gpio.dual_edge_irqs);
290
}
291
292
if (flow_type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_LEVEL_HIGH))
293
bits |= BIT(INTR_POL_CTL);
294
else
295
bits &= ~BIT(INTR_POL_CTL);
296
297
writel(bits, GPIO_INTR_CFG(gpio));
298
299
if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
300
msm_gpio_update_dual_edge_pos(gpio);
301
302
spin_unlock_irqrestore(&tlmm_lock, irq_flags);
303
304
return 0;
305
}
306
307
/*
308
* When the summary IRQ is raised, any number of GPIO lines may be high.
309
* It is the job of the summary handler to find all those GPIO lines
310
* which have been set as summary IRQ lines and which are triggered,
311
* and to call their interrupt handlers.
312
*/
313
static void msm_summary_irq_handler(unsigned int irq, struct irq_desc *desc)
314
{
315
unsigned long i;
316
struct irq_chip *chip = irq_desc_get_chip(desc);
317
318
chained_irq_enter(chip, desc);
319
320
for (i = find_first_bit(msm_gpio.enabled_irqs, NR_GPIO_IRQS);
321
i < NR_GPIO_IRQS;
322
i = find_next_bit(msm_gpio.enabled_irqs, NR_GPIO_IRQS, i + 1)) {
323
if (readl(GPIO_INTR_STATUS(i)) & BIT(INTR_STATUS))
324
generic_handle_irq(msm_gpio_to_irq(&msm_gpio.gpio_chip,
325
i));
326
}
327
328
chained_irq_exit(chip, desc);
329
}
330
331
static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on)
332
{
333
int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
334
335
if (on) {
336
if (bitmap_empty(msm_gpio.wake_irqs, NR_GPIO_IRQS))
337
irq_set_irq_wake(TLMM_SCSS_SUMMARY_IRQ, 1);
338
set_bit(gpio, msm_gpio.wake_irqs);
339
} else {
340
clear_bit(gpio, msm_gpio.wake_irqs);
341
if (bitmap_empty(msm_gpio.wake_irqs, NR_GPIO_IRQS))
342
irq_set_irq_wake(TLMM_SCSS_SUMMARY_IRQ, 0);
343
}
344
345
return 0;
346
}
347
348
static struct irq_chip msm_gpio_irq_chip = {
349
.name = "msmgpio",
350
.irq_mask = msm_gpio_irq_mask,
351
.irq_unmask = msm_gpio_irq_unmask,
352
.irq_ack = msm_gpio_irq_ack,
353
.irq_set_type = msm_gpio_irq_set_type,
354
.irq_set_wake = msm_gpio_irq_set_wake,
355
};
356
357
static int __devinit msm_gpio_probe(struct platform_device *dev)
358
{
359
int i, irq, ret;
360
361
bitmap_zero(msm_gpio.enabled_irqs, NR_GPIO_IRQS);
362
bitmap_zero(msm_gpio.wake_irqs, NR_GPIO_IRQS);
363
bitmap_zero(msm_gpio.dual_edge_irqs, NR_GPIO_IRQS);
364
msm_gpio.gpio_chip.label = dev->name;
365
ret = gpiochip_add(&msm_gpio.gpio_chip);
366
if (ret < 0)
367
return ret;
368
369
for (i = 0; i < msm_gpio.gpio_chip.ngpio; ++i) {
370
irq = msm_gpio_to_irq(&msm_gpio.gpio_chip, i);
371
irq_set_chip_and_handler(irq, &msm_gpio_irq_chip,
372
handle_level_irq);
373
set_irq_flags(irq, IRQF_VALID);
374
}
375
376
irq_set_chained_handler(TLMM_SCSS_SUMMARY_IRQ,
377
msm_summary_irq_handler);
378
return 0;
379
}
380
381
static int __devexit msm_gpio_remove(struct platform_device *dev)
382
{
383
int ret = gpiochip_remove(&msm_gpio.gpio_chip);
384
385
if (ret < 0)
386
return ret;
387
388
irq_set_handler(TLMM_SCSS_SUMMARY_IRQ, NULL);
389
390
return 0;
391
}
392
393
static struct platform_driver msm_gpio_driver = {
394
.probe = msm_gpio_probe,
395
.remove = __devexit_p(msm_gpio_remove),
396
.driver = {
397
.name = "msmgpio",
398
.owner = THIS_MODULE,
399
},
400
};
401
402
static struct platform_device msm_device_gpio = {
403
.name = "msmgpio",
404
.id = -1,
405
};
406
407
static int __init msm_gpio_init(void)
408
{
409
int rc;
410
411
rc = platform_driver_register(&msm_gpio_driver);
412
if (!rc) {
413
rc = platform_device_register(&msm_device_gpio);
414
if (rc)
415
platform_driver_unregister(&msm_gpio_driver);
416
}
417
418
return rc;
419
}
420
421
static void __exit msm_gpio_exit(void)
422
{
423
platform_device_unregister(&msm_device_gpio);
424
platform_driver_unregister(&msm_gpio_driver);
425
}
426
427
postcore_initcall(msm_gpio_init);
428
module_exit(msm_gpio_exit);
429
430
MODULE_AUTHOR("Gregory Bean <[email protected]>");
431
MODULE_DESCRIPTION("Driver for Qualcomm MSM TLMMv2 SoC GPIOs");
432
MODULE_LICENSE("GPL v2");
433
MODULE_ALIAS("platform:msmgpio");
434
435