Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/avr32/kernel/setup.c
10817 views
1
/*
2
* Copyright (C) 2004-2006 Atmel Corporation
3
*
4
* This program is free software; you can redistribute it and/or modify
5
* it under the terms of the GNU General Public License version 2 as
6
* published by the Free Software Foundation.
7
*/
8
9
#include <linux/clk.h>
10
#include <linux/init.h>
11
#include <linux/initrd.h>
12
#include <linux/sched.h>
13
#include <linux/console.h>
14
#include <linux/ioport.h>
15
#include <linux/bootmem.h>
16
#include <linux/fs.h>
17
#include <linux/module.h>
18
#include <linux/pfn.h>
19
#include <linux/root_dev.h>
20
#include <linux/cpu.h>
21
#include <linux/kernel.h>
22
23
#include <asm/sections.h>
24
#include <asm/processor.h>
25
#include <asm/pgtable.h>
26
#include <asm/setup.h>
27
#include <asm/sysreg.h>
28
29
#include <mach/board.h>
30
#include <mach/init.h>
31
32
extern int root_mountflags;
33
34
/*
35
* Initialize loops_per_jiffy as 5000000 (500MIPS).
36
* Better make it too large than too small...
37
*/
38
struct avr32_cpuinfo boot_cpu_data = {
39
.loops_per_jiffy = 5000000
40
};
41
EXPORT_SYMBOL(boot_cpu_data);
42
43
static char __initdata command_line[COMMAND_LINE_SIZE];
44
45
/*
46
* Standard memory resources
47
*/
48
static struct resource __initdata kernel_data = {
49
.name = "Kernel data",
50
.start = 0,
51
.end = 0,
52
.flags = IORESOURCE_MEM,
53
};
54
static struct resource __initdata kernel_code = {
55
.name = "Kernel code",
56
.start = 0,
57
.end = 0,
58
.flags = IORESOURCE_MEM,
59
.sibling = &kernel_data,
60
};
61
62
/*
63
* Available system RAM and reserved regions as singly linked
64
* lists. These lists are traversed using the sibling pointer in
65
* struct resource and are kept sorted at all times.
66
*/
67
static struct resource *__initdata system_ram;
68
static struct resource *__initdata reserved = &kernel_code;
69
70
/*
71
* We need to allocate these before the bootmem allocator is up and
72
* running, so we need this "cache". 32 entries are probably enough
73
* for all but the most insanely complex systems.
74
*/
75
static struct resource __initdata res_cache[32];
76
static unsigned int __initdata res_cache_next_free;
77
78
static void __init resource_init(void)
79
{
80
struct resource *mem, *res;
81
struct resource *new;
82
83
kernel_code.start = __pa(init_mm.start_code);
84
85
for (mem = system_ram; mem; mem = mem->sibling) {
86
new = alloc_bootmem_low(sizeof(struct resource));
87
memcpy(new, mem, sizeof(struct resource));
88
89
new->sibling = NULL;
90
if (request_resource(&iomem_resource, new))
91
printk(KERN_WARNING "Bad RAM resource %08x-%08x\n",
92
mem->start, mem->end);
93
}
94
95
for (res = reserved; res; res = res->sibling) {
96
new = alloc_bootmem_low(sizeof(struct resource));
97
memcpy(new, res, sizeof(struct resource));
98
99
new->sibling = NULL;
100
if (insert_resource(&iomem_resource, new))
101
printk(KERN_WARNING
102
"Bad reserved resource %s (%08x-%08x)\n",
103
res->name, res->start, res->end);
104
}
105
}
106
107
static void __init
108
add_physical_memory(resource_size_t start, resource_size_t end)
109
{
110
struct resource *new, *next, **pprev;
111
112
for (pprev = &system_ram, next = system_ram; next;
113
pprev = &next->sibling, next = next->sibling) {
114
if (end < next->start)
115
break;
116
if (start <= next->end) {
117
printk(KERN_WARNING
118
"Warning: Physical memory map is broken\n");
119
printk(KERN_WARNING
120
"Warning: %08x-%08x overlaps %08x-%08x\n",
121
start, end, next->start, next->end);
122
return;
123
}
124
}
125
126
if (res_cache_next_free >= ARRAY_SIZE(res_cache)) {
127
printk(KERN_WARNING
128
"Warning: Failed to add physical memory %08x-%08x\n",
129
start, end);
130
return;
131
}
132
133
new = &res_cache[res_cache_next_free++];
134
new->start = start;
135
new->end = end;
136
new->name = "System RAM";
137
new->flags = IORESOURCE_MEM;
138
139
*pprev = new;
140
}
141
142
static int __init
143
add_reserved_region(resource_size_t start, resource_size_t end,
144
const char *name)
145
{
146
struct resource *new, *next, **pprev;
147
148
if (end < start)
149
return -EINVAL;
150
151
if (res_cache_next_free >= ARRAY_SIZE(res_cache))
152
return -ENOMEM;
153
154
for (pprev = &reserved, next = reserved; next;
155
pprev = &next->sibling, next = next->sibling) {
156
if (end < next->start)
157
break;
158
if (start <= next->end)
159
return -EBUSY;
160
}
161
162
new = &res_cache[res_cache_next_free++];
163
new->start = start;
164
new->end = end;
165
new->name = name;
166
new->sibling = next;
167
new->flags = IORESOURCE_MEM;
168
169
*pprev = new;
170
171
return 0;
172
}
173
174
static unsigned long __init
175
find_free_region(const struct resource *mem, resource_size_t size,
176
resource_size_t align)
177
{
178
struct resource *res;
179
unsigned long target;
180
181
target = ALIGN(mem->start, align);
182
for (res = reserved; res; res = res->sibling) {
183
if ((target + size) <= res->start)
184
break;
185
if (target <= res->end)
186
target = ALIGN(res->end + 1, align);
187
}
188
189
if ((target + size) > (mem->end + 1))
190
return mem->end + 1;
191
192
return target;
193
}
194
195
static int __init
196
alloc_reserved_region(resource_size_t *start, resource_size_t size,
197
resource_size_t align, const char *name)
198
{
199
struct resource *mem;
200
resource_size_t target;
201
int ret;
202
203
for (mem = system_ram; mem; mem = mem->sibling) {
204
target = find_free_region(mem, size, align);
205
if (target <= mem->end) {
206
ret = add_reserved_region(target, target + size - 1,
207
name);
208
if (!ret)
209
*start = target;
210
return ret;
211
}
212
}
213
214
return -ENOMEM;
215
}
216
217
/*
218
* Early framebuffer allocation. Works as follows:
219
* - If fbmem_size is zero, nothing will be allocated or reserved.
220
* - If fbmem_start is zero when setup_bootmem() is called,
221
* a block of fbmem_size bytes will be reserved before bootmem
222
* initialization. It will be aligned to the largest page size
223
* that fbmem_size is a multiple of.
224
* - If fbmem_start is nonzero, an area of size fbmem_size will be
225
* reserved at the physical address fbmem_start if possible. If
226
* it collides with other reserved memory, a different block of
227
* same size will be allocated, just as if fbmem_start was zero.
228
*
229
* Board-specific code may use these variables to set up platform data
230
* for the framebuffer driver if fbmem_size is nonzero.
231
*/
232
resource_size_t __initdata fbmem_start;
233
resource_size_t __initdata fbmem_size;
234
235
/*
236
* "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
237
* use as framebuffer.
238
*
239
* "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
240
* starting at yyy to be reserved for use as framebuffer.
241
*
242
* The kernel won't verify that the memory region starting at yyy
243
* actually contains usable RAM.
244
*/
245
static int __init early_parse_fbmem(char *p)
246
{
247
int ret;
248
unsigned long align;
249
250
fbmem_size = memparse(p, &p);
251
if (*p == '@') {
252
fbmem_start = memparse(p + 1, &p);
253
ret = add_reserved_region(fbmem_start,
254
fbmem_start + fbmem_size - 1,
255
"Framebuffer");
256
if (ret) {
257
printk(KERN_WARNING
258
"Failed to reserve framebuffer memory\n");
259
fbmem_start = 0;
260
}
261
}
262
263
if (!fbmem_start) {
264
if ((fbmem_size & 0x000fffffUL) == 0)
265
align = 0x100000; /* 1 MiB */
266
else if ((fbmem_size & 0x0000ffffUL) == 0)
267
align = 0x10000; /* 64 KiB */
268
else
269
align = 0x1000; /* 4 KiB */
270
271
ret = alloc_reserved_region(&fbmem_start, fbmem_size,
272
align, "Framebuffer");
273
if (ret) {
274
printk(KERN_WARNING
275
"Failed to allocate framebuffer memory\n");
276
fbmem_size = 0;
277
} else {
278
memset(__va(fbmem_start), 0, fbmem_size);
279
}
280
}
281
282
return 0;
283
}
284
early_param("fbmem", early_parse_fbmem);
285
286
/*
287
* Pick out the memory size. We look for mem=size@start,
288
* where start and size are "size[KkMmGg]"
289
*/
290
static int __init early_mem(char *p)
291
{
292
resource_size_t size, start;
293
294
start = system_ram->start;
295
size = memparse(p, &p);
296
if (*p == '@')
297
start = memparse(p + 1, &p);
298
299
system_ram->start = start;
300
system_ram->end = system_ram->start + size - 1;
301
return 0;
302
}
303
early_param("mem", early_mem);
304
305
static int __init parse_tag_core(struct tag *tag)
306
{
307
if (tag->hdr.size > 2) {
308
if ((tag->u.core.flags & 1) == 0)
309
root_mountflags &= ~MS_RDONLY;
310
ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
311
}
312
return 0;
313
}
314
__tagtable(ATAG_CORE, parse_tag_core);
315
316
static int __init parse_tag_mem(struct tag *tag)
317
{
318
unsigned long start, end;
319
320
/*
321
* Ignore zero-sized entries. If we're running standalone, the
322
* SDRAM code may emit such entries if something goes
323
* wrong...
324
*/
325
if (tag->u.mem_range.size == 0)
326
return 0;
327
328
start = tag->u.mem_range.addr;
329
end = tag->u.mem_range.addr + tag->u.mem_range.size - 1;
330
331
add_physical_memory(start, end);
332
return 0;
333
}
334
__tagtable(ATAG_MEM, parse_tag_mem);
335
336
static int __init parse_tag_rdimg(struct tag *tag)
337
{
338
#ifdef CONFIG_BLK_DEV_INITRD
339
struct tag_mem_range *mem = &tag->u.mem_range;
340
int ret;
341
342
if (initrd_start) {
343
printk(KERN_WARNING
344
"Warning: Only the first initrd image will be used\n");
345
return 0;
346
}
347
348
ret = add_reserved_region(mem->addr, mem->addr + mem->size - 1,
349
"initrd");
350
if (ret) {
351
printk(KERN_WARNING
352
"Warning: Failed to reserve initrd memory\n");
353
return ret;
354
}
355
356
initrd_start = (unsigned long)__va(mem->addr);
357
initrd_end = initrd_start + mem->size;
358
#else
359
printk(KERN_WARNING "RAM disk image present, but "
360
"no initrd support in kernel, ignoring\n");
361
#endif
362
363
return 0;
364
}
365
__tagtable(ATAG_RDIMG, parse_tag_rdimg);
366
367
static int __init parse_tag_rsvd_mem(struct tag *tag)
368
{
369
struct tag_mem_range *mem = &tag->u.mem_range;
370
371
return add_reserved_region(mem->addr, mem->addr + mem->size - 1,
372
"Reserved");
373
}
374
__tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);
375
376
static int __init parse_tag_cmdline(struct tag *tag)
377
{
378
strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
379
return 0;
380
}
381
__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
382
383
static int __init parse_tag_clock(struct tag *tag)
384
{
385
/*
386
* We'll figure out the clocks by peeking at the system
387
* manager regs directly.
388
*/
389
return 0;
390
}
391
__tagtable(ATAG_CLOCK, parse_tag_clock);
392
393
/*
394
* The board_number correspond to the bd->bi_board_number in U-Boot. This
395
* parameter is only available during initialisation and can be used in some
396
* kind of board identification.
397
*/
398
u32 __initdata board_number;
399
400
static int __init parse_tag_boardinfo(struct tag *tag)
401
{
402
board_number = tag->u.boardinfo.board_number;
403
404
return 0;
405
}
406
__tagtable(ATAG_BOARDINFO, parse_tag_boardinfo);
407
408
/*
409
* Scan the tag table for this tag, and call its parse function. The
410
* tag table is built by the linker from all the __tagtable
411
* declarations.
412
*/
413
static int __init parse_tag(struct tag *tag)
414
{
415
extern struct tagtable __tagtable_begin, __tagtable_end;
416
struct tagtable *t;
417
418
for (t = &__tagtable_begin; t < &__tagtable_end; t++)
419
if (tag->hdr.tag == t->tag) {
420
t->parse(tag);
421
break;
422
}
423
424
return t < &__tagtable_end;
425
}
426
427
/*
428
* Parse all tags in the list we got from the boot loader
429
*/
430
static void __init parse_tags(struct tag *t)
431
{
432
for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
433
if (!parse_tag(t))
434
printk(KERN_WARNING
435
"Ignoring unrecognised tag 0x%08x\n",
436
t->hdr.tag);
437
}
438
439
/*
440
* Find a free memory region large enough for storing the
441
* bootmem bitmap.
442
*/
443
static unsigned long __init
444
find_bootmap_pfn(const struct resource *mem)
445
{
446
unsigned long bootmap_pages, bootmap_len;
447
unsigned long node_pages = PFN_UP(mem->end - mem->start + 1);
448
unsigned long bootmap_start;
449
450
bootmap_pages = bootmem_bootmap_pages(node_pages);
451
bootmap_len = bootmap_pages << PAGE_SHIFT;
452
453
/*
454
* Find a large enough region without reserved pages for
455
* storing the bootmem bitmap. We can take advantage of the
456
* fact that all lists have been sorted.
457
*
458
* We have to check that we don't collide with any reserved
459
* regions, which includes the kernel image and any RAMDISK
460
* images.
461
*/
462
bootmap_start = find_free_region(mem, bootmap_len, PAGE_SIZE);
463
464
return bootmap_start >> PAGE_SHIFT;
465
}
466
467
#define MAX_LOWMEM HIGHMEM_START
468
#define MAX_LOWMEM_PFN PFN_DOWN(MAX_LOWMEM)
469
470
static void __init setup_bootmem(void)
471
{
472
unsigned bootmap_size;
473
unsigned long first_pfn, bootmap_pfn, pages;
474
unsigned long max_pfn, max_low_pfn;
475
unsigned node = 0;
476
struct resource *res;
477
478
printk(KERN_INFO "Physical memory:\n");
479
for (res = system_ram; res; res = res->sibling)
480
printk(" %08x-%08x\n", res->start, res->end);
481
printk(KERN_INFO "Reserved memory:\n");
482
for (res = reserved; res; res = res->sibling)
483
printk(" %08x-%08x: %s\n",
484
res->start, res->end, res->name);
485
486
nodes_clear(node_online_map);
487
488
if (system_ram->sibling)
489
printk(KERN_WARNING "Only using first memory bank\n");
490
491
for (res = system_ram; res; res = NULL) {
492
first_pfn = PFN_UP(res->start);
493
max_low_pfn = max_pfn = PFN_DOWN(res->end + 1);
494
bootmap_pfn = find_bootmap_pfn(res);
495
if (bootmap_pfn > max_pfn)
496
panic("No space for bootmem bitmap!\n");
497
498
if (max_low_pfn > MAX_LOWMEM_PFN) {
499
max_low_pfn = MAX_LOWMEM_PFN;
500
#ifndef CONFIG_HIGHMEM
501
/*
502
* Lowmem is memory that can be addressed
503
* directly through P1/P2
504
*/
505
printk(KERN_WARNING
506
"Node %u: Only %ld MiB of memory will be used.\n",
507
node, MAX_LOWMEM >> 20);
508
printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
509
#else
510
#error HIGHMEM is not supported by AVR32 yet
511
#endif
512
}
513
514
/* Initialize the boot-time allocator with low memory only. */
515
bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,
516
first_pfn, max_low_pfn);
517
518
/*
519
* Register fully available RAM pages with the bootmem
520
* allocator.
521
*/
522
pages = max_low_pfn - first_pfn;
523
free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),
524
PFN_PHYS(pages));
525
526
/* Reserve space for the bootmem bitmap... */
527
reserve_bootmem_node(NODE_DATA(node),
528
PFN_PHYS(bootmap_pfn),
529
bootmap_size,
530
BOOTMEM_DEFAULT);
531
532
/* ...and any other reserved regions. */
533
for (res = reserved; res; res = res->sibling) {
534
if (res->start > PFN_PHYS(max_pfn))
535
break;
536
537
/*
538
* resource_init will complain about partial
539
* overlaps, so we'll just ignore such
540
* resources for now.
541
*/
542
if (res->start >= PFN_PHYS(first_pfn)
543
&& res->end < PFN_PHYS(max_pfn))
544
reserve_bootmem_node(
545
NODE_DATA(node), res->start,
546
res->end - res->start + 1,
547
BOOTMEM_DEFAULT);
548
}
549
550
node_set_online(node);
551
}
552
}
553
554
void __init setup_arch (char **cmdline_p)
555
{
556
struct clk *cpu_clk;
557
558
init_mm.start_code = (unsigned long)_text;
559
init_mm.end_code = (unsigned long)_etext;
560
init_mm.end_data = (unsigned long)_edata;
561
init_mm.brk = (unsigned long)_end;
562
563
/*
564
* Include .init section to make allocations easier. It will
565
* be removed before the resource is actually requested.
566
*/
567
kernel_code.start = __pa(__init_begin);
568
kernel_code.end = __pa(init_mm.end_code - 1);
569
kernel_data.start = __pa(init_mm.end_code);
570
kernel_data.end = __pa(init_mm.brk - 1);
571
572
parse_tags(bootloader_tags);
573
574
setup_processor();
575
setup_platform();
576
setup_board();
577
578
cpu_clk = clk_get(NULL, "cpu");
579
if (IS_ERR(cpu_clk)) {
580
printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
581
} else {
582
unsigned long cpu_hz = clk_get_rate(cpu_clk);
583
584
/*
585
* Well, duh, but it's probably a good idea to
586
* increment the use count.
587
*/
588
clk_enable(cpu_clk);
589
590
boot_cpu_data.clk = cpu_clk;
591
boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
592
printk("CPU: Running at %lu.%03lu MHz\n",
593
((cpu_hz + 500) / 1000) / 1000,
594
((cpu_hz + 500) / 1000) % 1000);
595
}
596
597
strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
598
*cmdline_p = command_line;
599
parse_early_param();
600
601
setup_bootmem();
602
603
#ifdef CONFIG_VT
604
conswitchp = &dummy_con;
605
#endif
606
607
paging_init();
608
resource_init();
609
}
610
611