Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/blackfin/kernel/bfin_dma_5xx.c
10817 views
1
/*
2
* bfin_dma_5xx.c - Blackfin DMA implementation
3
*
4
* Copyright 2004-2008 Analog Devices Inc.
5
*
6
* Licensed under the GPL-2 or later.
7
*/
8
9
#include <linux/errno.h>
10
#include <linux/interrupt.h>
11
#include <linux/kernel.h>
12
#include <linux/module.h>
13
#include <linux/param.h>
14
#include <linux/proc_fs.h>
15
#include <linux/sched.h>
16
#include <linux/seq_file.h>
17
#include <linux/spinlock.h>
18
19
#include <asm/blackfin.h>
20
#include <asm/cacheflush.h>
21
#include <asm/dma.h>
22
#include <asm/uaccess.h>
23
#include <asm/early_printk.h>
24
25
/*
26
* To make sure we work around 05000119 - we always check DMA_DONE bit,
27
* never the DMA_RUN bit
28
*/
29
30
struct dma_channel dma_ch[MAX_DMA_CHANNELS];
31
EXPORT_SYMBOL(dma_ch);
32
33
static int __init blackfin_dma_init(void)
34
{
35
int i;
36
37
printk(KERN_INFO "Blackfin DMA Controller\n");
38
39
40
#if ANOMALY_05000480
41
bfin_write_DMAC_TC_PER(0x0111);
42
#endif
43
44
for (i = 0; i < MAX_DMA_CHANNELS; i++) {
45
atomic_set(&dma_ch[i].chan_status, 0);
46
dma_ch[i].regs = dma_io_base_addr[i];
47
}
48
/* Mark MEMDMA Channel 0 as requested since we're using it internally */
49
request_dma(CH_MEM_STREAM0_DEST, "Blackfin dma_memcpy");
50
request_dma(CH_MEM_STREAM0_SRC, "Blackfin dma_memcpy");
51
52
#if defined(CONFIG_DEB_DMA_URGENT)
53
bfin_write_EBIU_DDRQUE(bfin_read_EBIU_DDRQUE()
54
| DEB1_URGENT | DEB2_URGENT | DEB3_URGENT);
55
#endif
56
57
return 0;
58
}
59
arch_initcall(blackfin_dma_init);
60
61
#ifdef CONFIG_PROC_FS
62
static int proc_dma_show(struct seq_file *m, void *v)
63
{
64
int i;
65
66
for (i = 0; i < MAX_DMA_CHANNELS; ++i)
67
if (dma_channel_active(i))
68
seq_printf(m, "%2d: %s\n", i, dma_ch[i].device_id);
69
70
return 0;
71
}
72
73
static int proc_dma_open(struct inode *inode, struct file *file)
74
{
75
return single_open(file, proc_dma_show, NULL);
76
}
77
78
static const struct file_operations proc_dma_operations = {
79
.open = proc_dma_open,
80
.read = seq_read,
81
.llseek = seq_lseek,
82
.release = single_release,
83
};
84
85
static int __init proc_dma_init(void)
86
{
87
return proc_create("dma", 0, NULL, &proc_dma_operations) != NULL;
88
}
89
late_initcall(proc_dma_init);
90
#endif
91
92
static void set_dma_peripheral_map(unsigned int channel, const char *device_id)
93
{
94
#ifdef CONFIG_BF54x
95
unsigned int per_map;
96
97
switch (channel) {
98
case CH_UART2_RX: per_map = 0xC << 12; break;
99
case CH_UART2_TX: per_map = 0xD << 12; break;
100
case CH_UART3_RX: per_map = 0xE << 12; break;
101
case CH_UART3_TX: per_map = 0xF << 12; break;
102
default: return;
103
}
104
105
if (strncmp(device_id, "BFIN_UART", 9) == 0)
106
dma_ch[channel].regs->peripheral_map = per_map;
107
#endif
108
}
109
110
/**
111
* request_dma - request a DMA channel
112
*
113
* Request the specific DMA channel from the system if it's available.
114
*/
115
int request_dma(unsigned int channel, const char *device_id)
116
{
117
pr_debug("request_dma() : BEGIN\n");
118
119
if (device_id == NULL)
120
printk(KERN_WARNING "request_dma(%u): no device_id given\n", channel);
121
122
#if defined(CONFIG_BF561) && ANOMALY_05000182
123
if (channel >= CH_IMEM_STREAM0_DEST && channel <= CH_IMEM_STREAM1_DEST) {
124
if (get_cclk() > 500000000) {
125
printk(KERN_WARNING
126
"Request IMDMA failed due to ANOMALY 05000182\n");
127
return -EFAULT;
128
}
129
}
130
#endif
131
132
if (atomic_cmpxchg(&dma_ch[channel].chan_status, 0, 1)) {
133
pr_debug("DMA CHANNEL IN USE\n");
134
return -EBUSY;
135
}
136
137
set_dma_peripheral_map(channel, device_id);
138
dma_ch[channel].device_id = device_id;
139
dma_ch[channel].irq = 0;
140
141
/* This is to be enabled by putting a restriction -
142
* you have to request DMA, before doing any operations on
143
* descriptor/channel
144
*/
145
pr_debug("request_dma() : END\n");
146
return 0;
147
}
148
EXPORT_SYMBOL(request_dma);
149
150
int set_dma_callback(unsigned int channel, irq_handler_t callback, void *data)
151
{
152
int ret;
153
unsigned int irq;
154
155
BUG_ON(channel >= MAX_DMA_CHANNELS || !callback ||
156
!atomic_read(&dma_ch[channel].chan_status));
157
158
irq = channel2irq(channel);
159
ret = request_irq(irq, callback, 0, dma_ch[channel].device_id, data);
160
if (ret)
161
return ret;
162
163
dma_ch[channel].irq = irq;
164
dma_ch[channel].data = data;
165
166
return 0;
167
}
168
EXPORT_SYMBOL(set_dma_callback);
169
170
/**
171
* clear_dma_buffer - clear DMA fifos for specified channel
172
*
173
* Set the Buffer Clear bit in the Configuration register of specific DMA
174
* channel. This will stop the descriptor based DMA operation.
175
*/
176
static void clear_dma_buffer(unsigned int channel)
177
{
178
dma_ch[channel].regs->cfg |= RESTART;
179
SSYNC();
180
dma_ch[channel].regs->cfg &= ~RESTART;
181
}
182
183
void free_dma(unsigned int channel)
184
{
185
pr_debug("freedma() : BEGIN\n");
186
BUG_ON(channel >= MAX_DMA_CHANNELS ||
187
!atomic_read(&dma_ch[channel].chan_status));
188
189
/* Halt the DMA */
190
disable_dma(channel);
191
clear_dma_buffer(channel);
192
193
if (dma_ch[channel].irq)
194
free_irq(dma_ch[channel].irq, dma_ch[channel].data);
195
196
/* Clear the DMA Variable in the Channel */
197
atomic_set(&dma_ch[channel].chan_status, 0);
198
199
pr_debug("freedma() : END\n");
200
}
201
EXPORT_SYMBOL(free_dma);
202
203
#ifdef CONFIG_PM
204
# ifndef MAX_DMA_SUSPEND_CHANNELS
205
# define MAX_DMA_SUSPEND_CHANNELS MAX_DMA_CHANNELS
206
# endif
207
int blackfin_dma_suspend(void)
208
{
209
int i;
210
211
for (i = 0; i < MAX_DMA_CHANNELS; ++i) {
212
if (dma_ch[i].regs->cfg & DMAEN) {
213
printk(KERN_ERR "DMA Channel %d failed to suspend\n", i);
214
return -EBUSY;
215
}
216
217
if (i < MAX_DMA_SUSPEND_CHANNELS)
218
dma_ch[i].saved_peripheral_map = dma_ch[i].regs->peripheral_map;
219
}
220
221
return 0;
222
}
223
224
void blackfin_dma_resume(void)
225
{
226
int i;
227
228
for (i = 0; i < MAX_DMA_CHANNELS; ++i) {
229
dma_ch[i].regs->cfg = 0;
230
231
if (i < MAX_DMA_SUSPEND_CHANNELS)
232
dma_ch[i].regs->peripheral_map = dma_ch[i].saved_peripheral_map;
233
}
234
}
235
#endif
236
237
/**
238
* blackfin_dma_early_init - minimal DMA init
239
*
240
* Setup a few DMA registers so we can safely do DMA transfers early on in
241
* the kernel booting process. Really this just means using dma_memcpy().
242
*/
243
void __init blackfin_dma_early_init(void)
244
{
245
early_shadow_stamp();
246
bfin_write_MDMA_S0_CONFIG(0);
247
bfin_write_MDMA_S1_CONFIG(0);
248
}
249
250
void __init early_dma_memcpy(void *pdst, const void *psrc, size_t size)
251
{
252
unsigned long dst = (unsigned long)pdst;
253
unsigned long src = (unsigned long)psrc;
254
struct dma_register *dst_ch, *src_ch;
255
256
early_shadow_stamp();
257
258
/* We assume that everything is 4 byte aligned, so include
259
* a basic sanity check
260
*/
261
BUG_ON(dst % 4);
262
BUG_ON(src % 4);
263
BUG_ON(size % 4);
264
265
src_ch = 0;
266
/* Find an avalible memDMA channel */
267
while (1) {
268
if (src_ch == (struct dma_register *)MDMA_S0_NEXT_DESC_PTR) {
269
dst_ch = (struct dma_register *)MDMA_D1_NEXT_DESC_PTR;
270
src_ch = (struct dma_register *)MDMA_S1_NEXT_DESC_PTR;
271
} else {
272
dst_ch = (struct dma_register *)MDMA_D0_NEXT_DESC_PTR;
273
src_ch = (struct dma_register *)MDMA_S0_NEXT_DESC_PTR;
274
}
275
276
if (!bfin_read16(&src_ch->cfg))
277
break;
278
else if (bfin_read16(&dst_ch->irq_status) & DMA_DONE) {
279
bfin_write16(&src_ch->cfg, 0);
280
break;
281
}
282
}
283
284
/* Force a sync in case a previous config reset on this channel
285
* occurred. This is needed so subsequent writes to DMA registers
286
* are not spuriously lost/corrupted.
287
*/
288
__builtin_bfin_ssync();
289
290
/* Destination */
291
bfin_write32(&dst_ch->start_addr, dst);
292
bfin_write16(&dst_ch->x_count, size >> 2);
293
bfin_write16(&dst_ch->x_modify, 1 << 2);
294
bfin_write16(&dst_ch->irq_status, DMA_DONE | DMA_ERR);
295
296
/* Source */
297
bfin_write32(&src_ch->start_addr, src);
298
bfin_write16(&src_ch->x_count, size >> 2);
299
bfin_write16(&src_ch->x_modify, 1 << 2);
300
bfin_write16(&src_ch->irq_status, DMA_DONE | DMA_ERR);
301
302
/* Enable */
303
bfin_write16(&src_ch->cfg, DMAEN | WDSIZE_32);
304
bfin_write16(&dst_ch->cfg, WNR | DI_EN | DMAEN | WDSIZE_32);
305
306
/* Since we are atomic now, don't use the workaround ssync */
307
__builtin_bfin_ssync();
308
}
309
310
void __init early_dma_memcpy_done(void)
311
{
312
early_shadow_stamp();
313
314
while ((bfin_read_MDMA_S0_CONFIG() && !(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)) ||
315
(bfin_read_MDMA_S1_CONFIG() && !(bfin_read_MDMA_D1_IRQ_STATUS() & DMA_DONE)))
316
continue;
317
318
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
319
bfin_write_MDMA_D1_IRQ_STATUS(DMA_DONE | DMA_ERR);
320
/*
321
* Now that DMA is done, we would normally flush cache, but
322
* i/d cache isn't running this early, so we don't bother,
323
* and just clear out the DMA channel for next time
324
*/
325
bfin_write_MDMA_S0_CONFIG(0);
326
bfin_write_MDMA_S1_CONFIG(0);
327
bfin_write_MDMA_D0_CONFIG(0);
328
bfin_write_MDMA_D1_CONFIG(0);
329
330
__builtin_bfin_ssync();
331
}
332
333
/**
334
* __dma_memcpy - program the MDMA registers
335
*
336
* Actually program MDMA0 and wait for the transfer to finish. Disable IRQs
337
* while programming registers so that everything is fully configured. Wait
338
* for DMA to finish with IRQs enabled. If interrupted, the initial DMA_DONE
339
* check will make sure we don't clobber any existing transfer.
340
*/
341
static void __dma_memcpy(u32 daddr, s16 dmod, u32 saddr, s16 smod, size_t cnt, u32 conf)
342
{
343
static DEFINE_SPINLOCK(mdma_lock);
344
unsigned long flags;
345
346
spin_lock_irqsave(&mdma_lock, flags);
347
348
/* Force a sync in case a previous config reset on this channel
349
* occurred. This is needed so subsequent writes to DMA registers
350
* are not spuriously lost/corrupted. Do it under irq lock and
351
* without the anomaly version (because we are atomic already).
352
*/
353
__builtin_bfin_ssync();
354
355
if (bfin_read_MDMA_S0_CONFIG())
356
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
357
continue;
358
359
if (conf & DMA2D) {
360
/* For larger bit sizes, we've already divided down cnt so it
361
* is no longer a multiple of 64k. So we have to break down
362
* the limit here so it is a multiple of the incoming size.
363
* There is no limitation here in terms of total size other
364
* than the hardware though as the bits lost in the shift are
365
* made up by MODIFY (== we can hit the whole address space).
366
* X: (2^(16 - 0)) * 1 == (2^(16 - 1)) * 2 == (2^(16 - 2)) * 4
367
*/
368
u32 shift = abs(dmod) >> 1;
369
size_t ycnt = cnt >> (16 - shift);
370
cnt = 1 << (16 - shift);
371
bfin_write_MDMA_D0_Y_COUNT(ycnt);
372
bfin_write_MDMA_S0_Y_COUNT(ycnt);
373
bfin_write_MDMA_D0_Y_MODIFY(dmod);
374
bfin_write_MDMA_S0_Y_MODIFY(smod);
375
}
376
377
bfin_write_MDMA_D0_START_ADDR(daddr);
378
bfin_write_MDMA_D0_X_COUNT(cnt);
379
bfin_write_MDMA_D0_X_MODIFY(dmod);
380
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
381
382
bfin_write_MDMA_S0_START_ADDR(saddr);
383
bfin_write_MDMA_S0_X_COUNT(cnt);
384
bfin_write_MDMA_S0_X_MODIFY(smod);
385
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
386
387
bfin_write_MDMA_S0_CONFIG(DMAEN | conf);
388
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | conf);
389
390
spin_unlock_irqrestore(&mdma_lock, flags);
391
392
SSYNC();
393
394
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
395
if (bfin_read_MDMA_S0_CONFIG())
396
continue;
397
else
398
return;
399
400
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
401
402
bfin_write_MDMA_S0_CONFIG(0);
403
bfin_write_MDMA_D0_CONFIG(0);
404
}
405
406
/**
407
* _dma_memcpy - translate C memcpy settings into MDMA settings
408
*
409
* Handle all the high level steps before we touch the MDMA registers. So
410
* handle direction, tweaking of sizes, and formatting of addresses.
411
*/
412
static void *_dma_memcpy(void *pdst, const void *psrc, size_t size)
413
{
414
u32 conf, shift;
415
s16 mod;
416
unsigned long dst = (unsigned long)pdst;
417
unsigned long src = (unsigned long)psrc;
418
419
if (size == 0)
420
return NULL;
421
422
if (dst % 4 == 0 && src % 4 == 0 && size % 4 == 0) {
423
conf = WDSIZE_32;
424
shift = 2;
425
} else if (dst % 2 == 0 && src % 2 == 0 && size % 2 == 0) {
426
conf = WDSIZE_16;
427
shift = 1;
428
} else {
429
conf = WDSIZE_8;
430
shift = 0;
431
}
432
433
/* If the two memory regions have a chance of overlapping, make
434
* sure the memcpy still works as expected. Do this by having the
435
* copy run backwards instead.
436
*/
437
mod = 1 << shift;
438
if (src < dst) {
439
mod *= -1;
440
dst += size + mod;
441
src += size + mod;
442
}
443
size >>= shift;
444
445
if (size > 0x10000)
446
conf |= DMA2D;
447
448
__dma_memcpy(dst, mod, src, mod, size, conf);
449
450
return pdst;
451
}
452
453
/**
454
* dma_memcpy - DMA memcpy under mutex lock
455
*
456
* Do not check arguments before starting the DMA memcpy. Break the transfer
457
* up into two pieces. The first transfer is in multiples of 64k and the
458
* second transfer is the piece smaller than 64k.
459
*/
460
void *dma_memcpy(void *pdst, const void *psrc, size_t size)
461
{
462
unsigned long dst = (unsigned long)pdst;
463
unsigned long src = (unsigned long)psrc;
464
465
if (bfin_addr_dcacheable(src))
466
blackfin_dcache_flush_range(src, src + size);
467
468
if (bfin_addr_dcacheable(dst))
469
blackfin_dcache_invalidate_range(dst, dst + size);
470
471
return dma_memcpy_nocache(pdst, psrc, size);
472
}
473
EXPORT_SYMBOL(dma_memcpy);
474
475
/**
476
* dma_memcpy_nocache - DMA memcpy under mutex lock
477
* - No cache flush/invalidate
478
*
479
* Do not check arguments before starting the DMA memcpy. Break the transfer
480
* up into two pieces. The first transfer is in multiples of 64k and the
481
* second transfer is the piece smaller than 64k.
482
*/
483
void *dma_memcpy_nocache(void *pdst, const void *psrc, size_t size)
484
{
485
size_t bulk, rest;
486
487
bulk = size & ~0xffff;
488
rest = size - bulk;
489
if (bulk)
490
_dma_memcpy(pdst, psrc, bulk);
491
_dma_memcpy(pdst + bulk, psrc + bulk, rest);
492
return pdst;
493
}
494
EXPORT_SYMBOL(dma_memcpy_nocache);
495
496
/**
497
* safe_dma_memcpy - DMA memcpy w/argument checking
498
*
499
* Verify arguments are safe before heading to dma_memcpy().
500
*/
501
void *safe_dma_memcpy(void *dst, const void *src, size_t size)
502
{
503
if (!access_ok(VERIFY_WRITE, dst, size))
504
return NULL;
505
if (!access_ok(VERIFY_READ, src, size))
506
return NULL;
507
return dma_memcpy(dst, src, size);
508
}
509
EXPORT_SYMBOL(safe_dma_memcpy);
510
511
static void _dma_out(unsigned long addr, unsigned long buf, unsigned short len,
512
u16 size, u16 dma_size)
513
{
514
blackfin_dcache_flush_range(buf, buf + len * size);
515
__dma_memcpy(addr, 0, buf, size, len, dma_size);
516
}
517
518
static void _dma_in(unsigned long addr, unsigned long buf, unsigned short len,
519
u16 size, u16 dma_size)
520
{
521
blackfin_dcache_invalidate_range(buf, buf + len * size);
522
__dma_memcpy(buf, size, addr, 0, len, dma_size);
523
}
524
525
#define MAKE_DMA_IO(io, bwl, isize, dmasize, cnst) \
526
void dma_##io##s##bwl(unsigned long addr, cnst void *buf, unsigned short len) \
527
{ \
528
_dma_##io(addr, (unsigned long)buf, len, isize, WDSIZE_##dmasize); \
529
} \
530
EXPORT_SYMBOL(dma_##io##s##bwl)
531
MAKE_DMA_IO(out, b, 1, 8, const);
532
MAKE_DMA_IO(in, b, 1, 8, );
533
MAKE_DMA_IO(out, w, 2, 16, const);
534
MAKE_DMA_IO(in, w, 2, 16, );
535
MAKE_DMA_IO(out, l, 4, 32, const);
536
MAKE_DMA_IO(in, l, 4, 32, );
537
538