Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/cris/arch-v10/drivers/axisflashmap.c
15126 views
1
/*
2
* Physical mapping layer for MTD using the Axis partitiontable format
3
*
4
* Copyright (c) 2001, 2002 Axis Communications AB
5
*
6
* This file is under the GPL.
7
*
8
* First partition is always sector 0 regardless of if we find a partitiontable
9
* or not. In the start of the next sector, there can be a partitiontable that
10
* tells us what other partitions to define. If there isn't, we use a default
11
* partition split defined below.
12
*
13
*/
14
15
#include <linux/module.h>
16
#include <linux/types.h>
17
#include <linux/kernel.h>
18
#include <linux/init.h>
19
#include <linux/slab.h>
20
21
#include <linux/mtd/concat.h>
22
#include <linux/mtd/map.h>
23
#include <linux/mtd/mtd.h>
24
#include <linux/mtd/mtdram.h>
25
#include <linux/mtd/partitions.h>
26
27
#include <asm/axisflashmap.h>
28
#include <asm/mmu.h>
29
#include <arch/sv_addr_ag.h>
30
31
#ifdef CONFIG_CRIS_LOW_MAP
32
#define FLASH_UNCACHED_ADDR KSEG_8
33
#define FLASH_CACHED_ADDR KSEG_5
34
#else
35
#define FLASH_UNCACHED_ADDR KSEG_E
36
#define FLASH_CACHED_ADDR KSEG_F
37
#endif
38
39
#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
40
#define flash_data __u8
41
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
42
#define flash_data __u16
43
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
44
#define flash_data __u32
45
#endif
46
47
/* From head.S */
48
extern unsigned long romfs_start, romfs_length, romfs_in_flash;
49
50
/* The master mtd for the entire flash. */
51
struct mtd_info* axisflash_mtd = NULL;
52
53
/* Map driver functions. */
54
55
static map_word flash_read(struct map_info *map, unsigned long ofs)
56
{
57
map_word tmp;
58
tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
59
return tmp;
60
}
61
62
static void flash_copy_from(struct map_info *map, void *to,
63
unsigned long from, ssize_t len)
64
{
65
memcpy(to, (void *)(map->map_priv_1 + from), len);
66
}
67
68
static void flash_write(struct map_info *map, map_word d, unsigned long adr)
69
{
70
*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
71
}
72
73
/*
74
* The map for chip select e0.
75
*
76
* We run into tricky coherence situations if we mix cached with uncached
77
* accesses to we only use the uncached version here.
78
*
79
* The size field is the total size where the flash chips may be mapped on the
80
* chip select. MTD probes should find all devices there and it does not matter
81
* if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
82
* probes will ignore them.
83
*
84
* The start address in map_priv_1 is in virtual memory so we cannot use
85
* MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
86
* address of cse0.
87
*/
88
static struct map_info map_cse0 = {
89
.name = "cse0",
90
.size = MEM_CSE0_SIZE,
91
.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
92
.read = flash_read,
93
.copy_from = flash_copy_from,
94
.write = flash_write,
95
.map_priv_1 = FLASH_UNCACHED_ADDR
96
};
97
98
/*
99
* The map for chip select e1.
100
*
101
* If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
102
* address, but there isn't.
103
*/
104
static struct map_info map_cse1 = {
105
.name = "cse1",
106
.size = MEM_CSE1_SIZE,
107
.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
108
.read = flash_read,
109
.copy_from = flash_copy_from,
110
.write = flash_write,
111
.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
112
};
113
114
/* If no partition-table was found, we use this default-set. */
115
#define MAX_PARTITIONS 7
116
#define NUM_DEFAULT_PARTITIONS 3
117
118
/*
119
* Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
120
* size of one flash block and "filesystem"-partition needs 5 blocks to be able
121
* to use JFFS.
122
*/
123
static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
124
{
125
.name = "boot firmware",
126
.size = CONFIG_ETRAX_PTABLE_SECTOR,
127
.offset = 0
128
},
129
{
130
.name = "kernel",
131
.size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
132
.offset = CONFIG_ETRAX_PTABLE_SECTOR
133
},
134
{
135
.name = "filesystem",
136
.size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
137
.offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
138
}
139
};
140
141
/* Initialize the ones normally used. */
142
static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
143
{
144
.name = "part0",
145
.size = CONFIG_ETRAX_PTABLE_SECTOR,
146
.offset = 0
147
},
148
{
149
.name = "part1",
150
.size = 0,
151
.offset = 0
152
},
153
{
154
.name = "part2",
155
.size = 0,
156
.offset = 0
157
},
158
{
159
.name = "part3",
160
.size = 0,
161
.offset = 0
162
},
163
{
164
.name = "part4",
165
.size = 0,
166
.offset = 0
167
},
168
{
169
.name = "part5",
170
.size = 0,
171
.offset = 0
172
},
173
{
174
.name = "part6",
175
.size = 0,
176
.offset = 0
177
},
178
};
179
180
#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
181
/* Main flash device */
182
static struct mtd_partition main_partition = {
183
.name = "main",
184
.size = 0,
185
.offset = 0
186
};
187
#endif
188
189
/*
190
* Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
191
* chips in that order (because the amd_flash-driver is faster).
192
*/
193
static struct mtd_info *probe_cs(struct map_info *map_cs)
194
{
195
struct mtd_info *mtd_cs = NULL;
196
197
printk(KERN_INFO
198
"%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
199
map_cs->name, map_cs->size, map_cs->map_priv_1);
200
201
#ifdef CONFIG_MTD_CFI
202
mtd_cs = do_map_probe("cfi_probe", map_cs);
203
#endif
204
#ifdef CONFIG_MTD_JEDECPROBE
205
if (!mtd_cs)
206
mtd_cs = do_map_probe("jedec_probe", map_cs);
207
#endif
208
209
return mtd_cs;
210
}
211
212
/*
213
* Probe each chip select individually for flash chips. If there are chips on
214
* both cse0 and cse1, the mtd_info structs will be concatenated to one struct
215
* so that MTD partitions can cross chip boundries.
216
*
217
* The only known restriction to how you can mount your chips is that each
218
* chip select must hold similar flash chips. But you need external hardware
219
* to do that anyway and you can put totally different chips on cse0 and cse1
220
* so it isn't really much of a restriction.
221
*/
222
static struct mtd_info *flash_probe(void)
223
{
224
struct mtd_info *mtd_cse0;
225
struct mtd_info *mtd_cse1;
226
struct mtd_info *mtd_cse;
227
228
mtd_cse0 = probe_cs(&map_cse0);
229
mtd_cse1 = probe_cs(&map_cse1);
230
231
if (!mtd_cse0 && !mtd_cse1) {
232
/* No chip found. */
233
return NULL;
234
}
235
236
if (mtd_cse0 && mtd_cse1) {
237
struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 };
238
239
/* Since the concatenation layer adds a small overhead we
240
* could try to figure out if the chips in cse0 and cse1 are
241
* identical and reprobe the whole cse0+cse1 window. But since
242
* flash chips are slow, the overhead is relatively small.
243
* So we use the MTD concatenation layer instead of further
244
* complicating the probing procedure.
245
*/
246
mtd_cse = mtd_concat_create(mtds, ARRAY_SIZE(mtds),
247
"cse0+cse1");
248
if (!mtd_cse) {
249
printk(KERN_ERR "%s and %s: Concatenation failed!\n",
250
map_cse0.name, map_cse1.name);
251
252
/* The best we can do now is to only use what we found
253
* at cse0.
254
*/
255
mtd_cse = mtd_cse0;
256
map_destroy(mtd_cse1);
257
}
258
} else {
259
mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1;
260
}
261
262
return mtd_cse;
263
}
264
265
/*
266
* Probe the flash chip(s) and, if it succeeds, read the partition-table
267
* and register the partitions with MTD.
268
*/
269
static int __init init_axis_flash(void)
270
{
271
struct mtd_info *mymtd;
272
int err = 0;
273
int pidx = 0;
274
struct partitiontable_head *ptable_head = NULL;
275
struct partitiontable_entry *ptable;
276
int use_default_ptable = 1; /* Until proven otherwise. */
277
const char pmsg[] = " /dev/flash%d at 0x%08x, size 0x%08x\n";
278
279
if (!(mymtd = flash_probe())) {
280
/* There's no reason to use this module if no flash chip can
281
* be identified. Make sure that's understood.
282
*/
283
printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
284
} else {
285
printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
286
mymtd->name, mymtd->size);
287
axisflash_mtd = mymtd;
288
}
289
290
if (mymtd) {
291
mymtd->owner = THIS_MODULE;
292
ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR +
293
CONFIG_ETRAX_PTABLE_SECTOR +
294
PARTITION_TABLE_OFFSET);
295
}
296
pidx++; /* First partition is always set to the default. */
297
298
if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
299
&& (ptable_head->size <
300
(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
301
PARTITIONTABLE_END_MARKER_SIZE))
302
&& (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
303
ptable_head->size -
304
PARTITIONTABLE_END_MARKER_SIZE)
305
== PARTITIONTABLE_END_MARKER)) {
306
/* Looks like a start, sane length and end of a
307
* partition table, lets check csum etc.
308
*/
309
int ptable_ok = 0;
310
struct partitiontable_entry *max_addr =
311
(struct partitiontable_entry *)
312
((unsigned long)ptable_head + sizeof(*ptable_head) +
313
ptable_head->size);
314
unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
315
unsigned char *p;
316
unsigned long csum = 0;
317
318
ptable = (struct partitiontable_entry *)
319
((unsigned long)ptable_head + sizeof(*ptable_head));
320
321
/* Lets be PARANOID, and check the checksum. */
322
p = (unsigned char*) ptable;
323
324
while (p <= (unsigned char*)max_addr) {
325
csum += *p++;
326
csum += *p++;
327
csum += *p++;
328
csum += *p++;
329
}
330
ptable_ok = (csum == ptable_head->checksum);
331
332
/* Read the entries and use/show the info. */
333
printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
334
(ptable_ok ? " valid" : "n invalid"), ptable_head,
335
max_addr);
336
337
/* We have found a working bootblock. Now read the
338
* partition table. Scan the table. It ends when
339
* there is 0xffffffff, that is, empty flash.
340
*/
341
while (ptable_ok
342
&& ptable->offset != 0xffffffff
343
&& ptable < max_addr
344
&& pidx < MAX_PARTITIONS) {
345
346
axis_partitions[pidx].offset = offset + ptable->offset;
347
axis_partitions[pidx].size = ptable->size;
348
349
printk(pmsg, pidx, axis_partitions[pidx].offset,
350
axis_partitions[pidx].size);
351
pidx++;
352
ptable++;
353
}
354
use_default_ptable = !ptable_ok;
355
}
356
357
if (romfs_in_flash) {
358
/* Add an overlapping device for the root partition (romfs). */
359
360
axis_partitions[pidx].name = "romfs";
361
axis_partitions[pidx].size = romfs_length;
362
axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
363
axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
364
365
printk(KERN_INFO
366
" Adding readonly flash partition for romfs image:\n");
367
printk(pmsg, pidx, axis_partitions[pidx].offset,
368
axis_partitions[pidx].size);
369
pidx++;
370
}
371
372
#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
373
if (mymtd) {
374
main_partition.size = mymtd->size;
375
err = mtd_device_register(mymtd, &main_partition, 1);
376
if (err)
377
panic("axisflashmap: Could not initialize "
378
"partition for whole main mtd device!\n");
379
}
380
#endif
381
382
if (mymtd) {
383
if (use_default_ptable) {
384
printk(KERN_INFO " Using default partition table.\n");
385
err = mtd_device_register(mymtd,
386
axis_default_partitions,
387
NUM_DEFAULT_PARTITIONS);
388
} else {
389
err = mtd_device_register(mymtd, axis_partitions,
390
pidx);
391
}
392
393
if (err)
394
panic("axisflashmap could not add MTD partitions!\n");
395
}
396
397
if (!romfs_in_flash) {
398
/* Create an RAM device for the root partition (romfs). */
399
400
#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
401
/* No use trying to boot this kernel from RAM. Panic! */
402
printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
403
"device due to kernel (mis)configuration!\n");
404
panic("This kernel cannot boot from RAM!\n");
405
#else
406
struct mtd_info *mtd_ram;
407
408
mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
409
if (!mtd_ram)
410
panic("axisflashmap couldn't allocate memory for "
411
"mtd_info!\n");
412
413
printk(KERN_INFO " Adding RAM partition for romfs image:\n");
414
printk(pmsg, pidx, (unsigned)romfs_start,
415
(unsigned)romfs_length);
416
417
err = mtdram_init_device(mtd_ram,
418
(void *)romfs_start,
419
romfs_length,
420
"romfs");
421
if (err)
422
panic("axisflashmap could not initialize MTD RAM "
423
"device!\n");
424
#endif
425
}
426
return err;
427
}
428
429
/* This adds the above to the kernels init-call chain. */
430
module_init(init_axis_flash);
431
432
EXPORT_SYMBOL(axisflash_mtd);
433
434