Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/cris/arch-v10/kernel/kgdb.c
15125 views
1
/*!**************************************************************************
2
*!
3
*! FILE NAME : kgdb.c
4
*!
5
*! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
6
*! It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
7
*!
8
*!---------------------------------------------------------------------------
9
*! HISTORY
10
*!
11
*! DATE NAME CHANGES
12
*! ---- ---- -------
13
*! Apr 26 1999 Hendrik Ruijter Initial version.
14
*! May 6 1999 Hendrik Ruijter Removed call to strlen in libc and removed
15
*! struct assignment as it generates calls to
16
*! memcpy in libc.
17
*! Jun 17 1999 Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
18
*! Jul 21 1999 Bjorn Wesen eLinux port
19
*!
20
*!---------------------------------------------------------------------------
21
*!
22
*! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
23
*!
24
*!**************************************************************************/
25
/* @(#) cris_stub.c 1.3 06/17/99 */
26
27
/*
28
* kgdb usage notes:
29
* -----------------
30
*
31
* If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
32
* built with different gcc flags: "-g" is added to get debug infos, and
33
* "-fomit-frame-pointer" is omitted to make debugging easier. Since the
34
* resulting kernel will be quite big (approx. > 7 MB), it will be stripped
35
* before compresion. Such a kernel will behave just as usually, except if
36
* given a "debug=<device>" command line option. (Only serial devices are
37
* allowed for <device>, i.e. no printers or the like; possible values are
38
* machine depedend and are the same as for the usual debug device, the one
39
* for logging kernel messages.) If that option is given and the device can be
40
* initialized, the kernel will connect to the remote gdb in trap_init(). The
41
* serial parameters are fixed to 8N1 and 115200 bps, for easyness of
42
* implementation.
43
*
44
* To start a debugging session, start that gdb with the debugging kernel
45
* image (the one with the symbols, vmlinux.debug) named on the command line.
46
* This file will be used by gdb to get symbol and debugging infos about the
47
* kernel. Next, select remote debug mode by
48
* target remote <device>
49
* where <device> is the name of the serial device over which the debugged
50
* machine is connected. Maybe you have to adjust the baud rate by
51
* set remotebaud <rate>
52
* or also other parameters with stty:
53
* shell stty ... </dev/...
54
* If the kernel to debug has already booted, it waited for gdb and now
55
* connects, and you'll see a breakpoint being reported. If the kernel isn't
56
* running yet, start it now. The order of gdb and the kernel doesn't matter.
57
* Another thing worth knowing about in the getting-started phase is how to
58
* debug the remote protocol itself. This is activated with
59
* set remotedebug 1
60
* gdb will then print out each packet sent or received. You'll also get some
61
* messages about the gdb stub on the console of the debugged machine.
62
*
63
* If all that works, you can use lots of the usual debugging techniques on
64
* the kernel, e.g. inspecting and changing variables/memory, setting
65
* breakpoints, single stepping and so on. It's also possible to interrupt the
66
* debugged kernel by pressing C-c in gdb. Have fun! :-)
67
*
68
* The gdb stub is entered (and thus the remote gdb gets control) in the
69
* following situations:
70
*
71
* - If breakpoint() is called. This is just after kgdb initialization, or if
72
* a breakpoint() call has been put somewhere into the kernel source.
73
* (Breakpoints can of course also be set the usual way in gdb.)
74
* In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
75
*
76
* - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
77
* are entered. All the CPU exceptions are mapped to (more or less..., see
78
* the hard_trap_info array below) appropriate signal, which are reported
79
* to gdb. die_if_kernel() is usually called after some kind of access
80
* error and thus is reported as SIGSEGV.
81
*
82
* - When panic() is called. This is reported as SIGABRT.
83
*
84
* - If C-c is received over the serial line, which is treated as
85
* SIGINT.
86
*
87
* Of course, all these signals are just faked for gdb, since there is no
88
* signal concept as such for the kernel. It also isn't possible --obviously--
89
* to set signal handlers from inside gdb, or restart the kernel with a
90
* signal.
91
*
92
* Current limitations:
93
*
94
* - While the kernel is stopped, interrupts are disabled for safety reasons
95
* (i.e., variables not changing magically or the like). But this also
96
* means that the clock isn't running anymore, and that interrupts from the
97
* hardware may get lost/not be served in time. This can cause some device
98
* errors...
99
*
100
* - When single-stepping, only one instruction of the current thread is
101
* executed, but interrupts are allowed for that time and will be serviced
102
* if pending. Be prepared for that.
103
*
104
* - All debugging happens in kernel virtual address space. There's no way to
105
* access physical memory not mapped in kernel space, or to access user
106
* space. A way to work around this is using get_user_long & Co. in gdb
107
* expressions, but only for the current process.
108
*
109
* - Interrupting the kernel only works if interrupts are currently allowed,
110
* and the interrupt of the serial line isn't blocked by some other means
111
* (IPL too high, disabled, ...)
112
*
113
* - The gdb stub is currently not reentrant, i.e. errors that happen therein
114
* (e.g. accessing invalid memory) may not be caught correctly. This could
115
* be removed in future by introducing a stack of struct registers.
116
*
117
*/
118
119
/*
120
* To enable debugger support, two things need to happen. One, a
121
* call to kgdb_init() is necessary in order to allow any breakpoints
122
* or error conditions to be properly intercepted and reported to gdb.
123
* Two, a breakpoint needs to be generated to begin communication. This
124
* is most easily accomplished by a call to breakpoint().
125
*
126
* The following gdb commands are supported:
127
*
128
* command function Return value
129
*
130
* g return the value of the CPU registers hex data or ENN
131
* G set the value of the CPU registers OK or ENN
132
*
133
* mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
134
* MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
135
*
136
* c Resume at current address SNN ( signal NN)
137
* cAA..AA Continue at address AA..AA SNN
138
*
139
* s Step one instruction SNN
140
* sAA..AA Step one instruction from AA..AA SNN
141
*
142
* k kill
143
*
144
* ? What was the last sigval ? SNN (signal NN)
145
*
146
* bBB..BB Set baud rate to BB..BB OK or BNN, then sets
147
* baud rate
148
*
149
* All commands and responses are sent with a packet which includes a
150
* checksum. A packet consists of
151
*
152
* $<packet info>#<checksum>.
153
*
154
* where
155
* <packet info> :: <characters representing the command or response>
156
* <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
157
*
158
* When a packet is received, it is first acknowledged with either '+' or '-'.
159
* '+' indicates a successful transfer. '-' indicates a failed transfer.
160
*
161
* Example:
162
*
163
* Host: Reply:
164
* $m0,10#2a +$00010203040506070809101112131415#42
165
*
166
*/
167
168
169
#include <linux/string.h>
170
#include <linux/signal.h>
171
#include <linux/kernel.h>
172
#include <linux/delay.h>
173
#include <linux/linkage.h>
174
#include <linux/reboot.h>
175
176
#include <asm/setup.h>
177
#include <asm/ptrace.h>
178
179
#include <arch/svinto.h>
180
#include <asm/irq.h>
181
182
static int kgdb_started = 0;
183
184
/********************************* Register image ****************************/
185
/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
186
Reference", p. 1-1, with the additional register definitions of the
187
ETRAX 100LX in cris-opc.h.
188
There are 16 general 32-bit registers, R0-R15, where R14 is the stack
189
pointer, SP, and R15 is the program counter, PC.
190
There are 16 special registers, P0-P15, where three of the unimplemented
191
registers, P0, P4 and P8, are reserved as zero-registers. A read from
192
any of these registers returns zero and a write has no effect. */
193
194
typedef
195
struct register_image
196
{
197
/* Offset */
198
unsigned int r0; /* 0x00 */
199
unsigned int r1; /* 0x04 */
200
unsigned int r2; /* 0x08 */
201
unsigned int r3; /* 0x0C */
202
unsigned int r4; /* 0x10 */
203
unsigned int r5; /* 0x14 */
204
unsigned int r6; /* 0x18 */
205
unsigned int r7; /* 0x1C */
206
unsigned int r8; /* 0x20 Frame pointer */
207
unsigned int r9; /* 0x24 */
208
unsigned int r10; /* 0x28 */
209
unsigned int r11; /* 0x2C */
210
unsigned int r12; /* 0x30 */
211
unsigned int r13; /* 0x34 */
212
unsigned int sp; /* 0x38 Stack pointer */
213
unsigned int pc; /* 0x3C Program counter */
214
215
unsigned char p0; /* 0x40 8-bit zero-register */
216
unsigned char vr; /* 0x41 Version register */
217
218
unsigned short p4; /* 0x42 16-bit zero-register */
219
unsigned short ccr; /* 0x44 Condition code register */
220
221
unsigned int mof; /* 0x46 Multiply overflow register */
222
223
unsigned int p8; /* 0x4A 32-bit zero-register */
224
unsigned int ibr; /* 0x4E Interrupt base register */
225
unsigned int irp; /* 0x52 Interrupt return pointer */
226
unsigned int srp; /* 0x56 Subroutine return pointer */
227
unsigned int bar; /* 0x5A Breakpoint address register */
228
unsigned int dccr; /* 0x5E Double condition code register */
229
unsigned int brp; /* 0x62 Breakpoint return pointer (pc in caller) */
230
unsigned int usp; /* 0x66 User mode stack pointer */
231
} registers;
232
233
/************** Prototypes for local library functions ***********************/
234
235
/* Copy of strcpy from libc. */
236
static char *gdb_cris_strcpy (char *s1, const char *s2);
237
238
/* Copy of strlen from libc. */
239
static int gdb_cris_strlen (const char *s);
240
241
/* Copy of memchr from libc. */
242
static void *gdb_cris_memchr (const void *s, int c, int n);
243
244
/* Copy of strtol from libc. Does only support base 16. */
245
static int gdb_cris_strtol (const char *s, char **endptr, int base);
246
247
/********************** Prototypes for local functions. **********************/
248
/* Copy the content of a register image into another. The size n is
249
the size of the register image. Due to struct assignment generation of
250
memcpy in libc. */
251
static void copy_registers (registers *dptr, registers *sptr, int n);
252
253
/* Copy the stored registers from the stack. Put the register contents
254
of thread thread_id in the struct reg. */
255
static void copy_registers_from_stack (int thread_id, registers *reg);
256
257
/* Copy the registers to the stack. Put the register contents of thread
258
thread_id from struct reg to the stack. */
259
static void copy_registers_to_stack (int thread_id, registers *reg);
260
261
/* Write a value to a specified register regno in the register image
262
of the current thread. */
263
static int write_register (int regno, char *val);
264
265
/* Write a value to a specified register in the stack of a thread other
266
than the current thread. */
267
static write_stack_register (int thread_id, int regno, char *valptr);
268
269
/* Read a value from a specified register in the register image. Returns the
270
status of the read operation. The register value is returned in valptr. */
271
static int read_register (char regno, unsigned int *valptr);
272
273
/* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
274
int getDebugChar (void);
275
276
/* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
277
void putDebugChar (int val);
278
279
void enableDebugIRQ (void);
280
281
/* Returns the integer equivalent of a hexadecimal character. */
282
static int hex (char ch);
283
284
/* Convert the memory, pointed to by mem into hexadecimal representation.
285
Put the result in buf, and return a pointer to the last character
286
in buf (null). */
287
static char *mem2hex (char *buf, unsigned char *mem, int count);
288
289
/* Convert the array, in hexadecimal representation, pointed to by buf into
290
binary representation. Put the result in mem, and return a pointer to
291
the character after the last byte written. */
292
static unsigned char *hex2mem (unsigned char *mem, char *buf, int count);
293
294
/* Put the content of the array, in binary representation, pointed to by buf
295
into memory pointed to by mem, and return a pointer to
296
the character after the last byte written. */
297
static unsigned char *bin2mem (unsigned char *mem, unsigned char *buf, int count);
298
299
/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
300
returned. */
301
static void getpacket (char *buffer);
302
303
/* Send $<data>#<checksum> from the <data> in the array buffer. */
304
static void putpacket (char *buffer);
305
306
/* Build and send a response packet in order to inform the host the
307
stub is stopped. */
308
static void stub_is_stopped (int sigval);
309
310
/* All expected commands are sent from remote.c. Send a response according
311
to the description in remote.c. */
312
static void handle_exception (int sigval);
313
314
/* Performs a complete re-start from scratch. ETRAX specific. */
315
static void kill_restart (void);
316
317
/******************** Prototypes for global functions. ***********************/
318
319
/* The string str is prepended with the GDB printout token and sent. */
320
void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
321
322
/* The hook for both static (compiled) and dynamic breakpoints set by GDB.
323
ETRAX 100 specific. */
324
void handle_breakpoint (void); /* used by irq.c */
325
326
/* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
327
void handle_interrupt (void); /* used by irq.c */
328
329
/* A static breakpoint to be used at startup. */
330
void breakpoint (void); /* called by init/main.c */
331
332
/* From osys_int.c, executing_task contains the number of the current
333
executing task in osys. Does not know of object-oriented threads. */
334
extern unsigned char executing_task;
335
336
/* The number of characters used for a 64 bit thread identifier. */
337
#define HEXCHARS_IN_THREAD_ID 16
338
339
/* Avoid warning as the internal_stack is not used in the C-code. */
340
#define USEDVAR(name) { if (name) { ; } }
341
#define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) }
342
343
/********************************** Packet I/O ******************************/
344
/* BUFMAX defines the maximum number of characters in
345
inbound/outbound buffers */
346
#define BUFMAX 512
347
348
/* Run-length encoding maximum length. Send 64 at most. */
349
#define RUNLENMAX 64
350
351
/* The inbound/outbound buffers used in packet I/O */
352
static char remcomInBuffer[BUFMAX];
353
static char remcomOutBuffer[BUFMAX];
354
355
/* Error and warning messages. */
356
enum error_type
357
{
358
SUCCESS, E01, E02, E03, E04, E05, E06, E07
359
};
360
static char *error_message[] =
361
{
362
"",
363
"E01 Set current or general thread - H[c,g] - internal error.",
364
"E02 Change register content - P - cannot change read-only register.",
365
"E03 Thread is not alive.", /* T, not used. */
366
"E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
367
"E05 Change register content - P - the register is not implemented..",
368
"E06 Change memory content - M - internal error.",
369
"E07 Change register content - P - the register is not stored on the stack"
370
};
371
/********************************* Register image ****************************/
372
/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
373
Reference", p. 1-1, with the additional register definitions of the
374
ETRAX 100LX in cris-opc.h.
375
There are 16 general 32-bit registers, R0-R15, where R14 is the stack
376
pointer, SP, and R15 is the program counter, PC.
377
There are 16 special registers, P0-P15, where three of the unimplemented
378
registers, P0, P4 and P8, are reserved as zero-registers. A read from
379
any of these registers returns zero and a write has no effect. */
380
enum register_name
381
{
382
R0, R1, R2, R3,
383
R4, R5, R6, R7,
384
R8, R9, R10, R11,
385
R12, R13, SP, PC,
386
P0, VR, P2, P3,
387
P4, CCR, P6, MOF,
388
P8, IBR, IRP, SRP,
389
BAR, DCCR, BRP, USP
390
};
391
392
/* The register sizes of the registers in register_name. An unimplemented register
393
is designated by size 0 in this array. */
394
static int register_size[] =
395
{
396
4, 4, 4, 4,
397
4, 4, 4, 4,
398
4, 4, 4, 4,
399
4, 4, 4, 4,
400
1, 1, 0, 0,
401
2, 2, 0, 4,
402
4, 4, 4, 4,
403
4, 4, 4, 4
404
};
405
406
/* Contains the register image of the executing thread in the assembler
407
part of the code in order to avoid horrible addressing modes. */
408
static registers reg;
409
410
/* FIXME: Should this be used? Delete otherwise. */
411
/* Contains the assumed consistency state of the register image. Uses the
412
enum error_type for state information. */
413
static int consistency_status = SUCCESS;
414
415
/********************************** Handle exceptions ************************/
416
/* The variable reg contains the register image associated with the
417
current_thread_c variable. It is a complete register image created at
418
entry. The reg_g contains a register image of a task where the general
419
registers are taken from the stack and all special registers are taken
420
from the executing task. It is associated with current_thread_g and used
421
in order to provide access mainly for 'g', 'G' and 'P'.
422
*/
423
424
/* Need two task id pointers in order to handle Hct and Hgt commands. */
425
static int current_thread_c = 0;
426
static int current_thread_g = 0;
427
428
/* Need two register images in order to handle Hct and Hgt commands. The
429
variable reg_g is in addition to reg above. */
430
static registers reg_g;
431
432
/********************************** Breakpoint *******************************/
433
/* Use an internal stack in the breakpoint and interrupt response routines */
434
#define INTERNAL_STACK_SIZE 1024
435
static char internal_stack[INTERNAL_STACK_SIZE];
436
437
/* Due to the breakpoint return pointer, a state variable is needed to keep
438
track of whether it is a static (compiled) or dynamic (gdb-invoked)
439
breakpoint to be handled. A static breakpoint uses the content of register
440
BRP as it is whereas a dynamic breakpoint requires subtraction with 2
441
in order to execute the instruction. The first breakpoint is static. */
442
static unsigned char is_dyn_brkp = 0;
443
444
/********************************* String library ****************************/
445
/* Single-step over library functions creates trap loops. */
446
447
/* Copy char s2[] to s1[]. */
448
static char*
449
gdb_cris_strcpy (char *s1, const char *s2)
450
{
451
char *s = s1;
452
453
for (s = s1; (*s++ = *s2++) != '\0'; )
454
;
455
return (s1);
456
}
457
458
/* Find length of s[]. */
459
static int
460
gdb_cris_strlen (const char *s)
461
{
462
const char *sc;
463
464
for (sc = s; *sc != '\0'; sc++)
465
;
466
return (sc - s);
467
}
468
469
/* Find first occurrence of c in s[n]. */
470
static void*
471
gdb_cris_memchr (const void *s, int c, int n)
472
{
473
const unsigned char uc = c;
474
const unsigned char *su;
475
476
for (su = s; 0 < n; ++su, --n)
477
if (*su == uc)
478
return ((void *)su);
479
return (NULL);
480
}
481
/******************************* Standard library ****************************/
482
/* Single-step over library functions creates trap loops. */
483
/* Convert string to long. */
484
static int
485
gdb_cris_strtol (const char *s, char **endptr, int base)
486
{
487
char *s1;
488
char *sd;
489
int x = 0;
490
491
for (s1 = (char*)s; (sd = gdb_cris_memchr(hex_asc, *s1, base)) != NULL; ++s1)
492
x = x * base + (sd - hex_asc);
493
494
if (endptr)
495
{
496
/* Unconverted suffix is stored in endptr unless endptr is NULL. */
497
*endptr = s1;
498
}
499
500
return x;
501
}
502
503
/********************************* Register image ****************************/
504
/* Copy the content of a register image into another. The size n is
505
the size of the register image. Due to struct assignment generation of
506
memcpy in libc. */
507
static void
508
copy_registers (registers *dptr, registers *sptr, int n)
509
{
510
unsigned char *dreg;
511
unsigned char *sreg;
512
513
for (dreg = (unsigned char*)dptr, sreg = (unsigned char*)sptr; n > 0; n--)
514
*dreg++ = *sreg++;
515
}
516
517
#ifdef PROCESS_SUPPORT
518
/* Copy the stored registers from the stack. Put the register contents
519
of thread thread_id in the struct reg. */
520
static void
521
copy_registers_from_stack (int thread_id, registers *regptr)
522
{
523
int j;
524
stack_registers *s = (stack_registers *)stack_list[thread_id];
525
unsigned int *d = (unsigned int *)regptr;
526
527
for (j = 13; j >= 0; j--)
528
*d++ = s->r[j];
529
regptr->sp = (unsigned int)stack_list[thread_id];
530
regptr->pc = s->pc;
531
regptr->dccr = s->dccr;
532
regptr->srp = s->srp;
533
}
534
535
/* Copy the registers to the stack. Put the register contents of thread
536
thread_id from struct reg to the stack. */
537
static void
538
copy_registers_to_stack (int thread_id, registers *regptr)
539
{
540
int i;
541
stack_registers *d = (stack_registers *)stack_list[thread_id];
542
unsigned int *s = (unsigned int *)regptr;
543
544
for (i = 0; i < 14; i++) {
545
d->r[i] = *s++;
546
}
547
d->pc = regptr->pc;
548
d->dccr = regptr->dccr;
549
d->srp = regptr->srp;
550
}
551
#endif
552
553
/* Write a value to a specified register in the register image of the current
554
thread. Returns status code SUCCESS, E02 or E05. */
555
static int
556
write_register (int regno, char *val)
557
{
558
int status = SUCCESS;
559
registers *current_reg = &reg;
560
561
if (regno >= R0 && regno <= PC) {
562
/* 32-bit register with simple offset. */
563
hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int),
564
val, sizeof(unsigned int));
565
}
566
else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
567
/* Do not support read-only registers. */
568
status = E02;
569
}
570
else if (regno == CCR) {
571
/* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
572
and P7 (MOF) is 32 bits in ETRAX 100LX. */
573
hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
574
val, sizeof(unsigned short));
575
}
576
else if (regno >= MOF && regno <= USP) {
577
/* 32 bit register with complex offset. (P8 has been taken care of.) */
578
hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
579
val, sizeof(unsigned int));
580
}
581
else {
582
/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
583
status = E05;
584
}
585
return status;
586
}
587
588
#ifdef PROCESS_SUPPORT
589
/* Write a value to a specified register in the stack of a thread other
590
than the current thread. Returns status code SUCCESS or E07. */
591
static int
592
write_stack_register (int thread_id, int regno, char *valptr)
593
{
594
int status = SUCCESS;
595
stack_registers *d = (stack_registers *)stack_list[thread_id];
596
unsigned int val;
597
598
hex2mem ((unsigned char *)&val, valptr, sizeof(unsigned int));
599
if (regno >= R0 && regno < SP) {
600
d->r[regno] = val;
601
}
602
else if (regno == SP) {
603
stack_list[thread_id] = val;
604
}
605
else if (regno == PC) {
606
d->pc = val;
607
}
608
else if (regno == SRP) {
609
d->srp = val;
610
}
611
else if (regno == DCCR) {
612
d->dccr = val;
613
}
614
else {
615
/* Do not support registers in the current thread. */
616
status = E07;
617
}
618
return status;
619
}
620
#endif
621
622
/* Read a value from a specified register in the register image. Returns the
623
value in the register or -1 for non-implemented registers.
624
Should check consistency_status after a call which may be E05 after changes
625
in the implementation. */
626
static int
627
read_register (char regno, unsigned int *valptr)
628
{
629
registers *current_reg = &reg;
630
631
if (regno >= R0 && regno <= PC) {
632
/* 32-bit register with simple offset. */
633
*valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
634
return SUCCESS;
635
}
636
else if (regno == P0 || regno == VR) {
637
/* 8 bit register with complex offset. */
638
*valptr = (unsigned int)(*(unsigned char *)
639
((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
640
return SUCCESS;
641
}
642
else if (regno == P4 || regno == CCR) {
643
/* 16 bit register with complex offset. */
644
*valptr = (unsigned int)(*(unsigned short *)
645
((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
646
return SUCCESS;
647
}
648
else if (regno >= MOF && regno <= USP) {
649
/* 32 bit register with complex offset. */
650
*valptr = *(unsigned int *)((char *)&(current_reg->p8)
651
+ (regno-P8) * sizeof(unsigned int));
652
return SUCCESS;
653
}
654
else {
655
/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
656
consistency_status = E05;
657
return E05;
658
}
659
}
660
661
/********************************** Packet I/O ******************************/
662
/* Returns the integer equivalent of a hexadecimal character. */
663
static int
664
hex (char ch)
665
{
666
if ((ch >= 'a') && (ch <= 'f'))
667
return (ch - 'a' + 10);
668
if ((ch >= '0') && (ch <= '9'))
669
return (ch - '0');
670
if ((ch >= 'A') && (ch <= 'F'))
671
return (ch - 'A' + 10);
672
return (-1);
673
}
674
675
/* Convert the memory, pointed to by mem into hexadecimal representation.
676
Put the result in buf, and return a pointer to the last character
677
in buf (null). */
678
679
static int do_printk = 0;
680
681
static char *
682
mem2hex(char *buf, unsigned char *mem, int count)
683
{
684
int i;
685
int ch;
686
687
if (mem == NULL) {
688
/* Bogus read from m0. FIXME: What constitutes a valid address? */
689
for (i = 0; i < count; i++) {
690
*buf++ = '0';
691
*buf++ = '0';
692
}
693
} else {
694
/* Valid mem address. */
695
for (i = 0; i < count; i++) {
696
ch = *mem++;
697
buf = pack_hex_byte(buf, ch);
698
}
699
}
700
701
/* Terminate properly. */
702
*buf = '\0';
703
return (buf);
704
}
705
706
/* Convert the array, in hexadecimal representation, pointed to by buf into
707
binary representation. Put the result in mem, and return a pointer to
708
the character after the last byte written. */
709
static unsigned char*
710
hex2mem (unsigned char *mem, char *buf, int count)
711
{
712
int i;
713
unsigned char ch;
714
for (i = 0; i < count; i++) {
715
ch = hex (*buf++) << 4;
716
ch = ch + hex (*buf++);
717
*mem++ = ch;
718
}
719
return (mem);
720
}
721
722
/* Put the content of the array, in binary representation, pointed to by buf
723
into memory pointed to by mem, and return a pointer to the character after
724
the last byte written.
725
Gdb will escape $, #, and the escape char (0x7d). */
726
static unsigned char*
727
bin2mem (unsigned char *mem, unsigned char *buf, int count)
728
{
729
int i;
730
unsigned char *next;
731
for (i = 0; i < count; i++) {
732
/* Check for any escaped characters. Be paranoid and
733
only unescape chars that should be escaped. */
734
if (*buf == 0x7d) {
735
next = buf + 1;
736
if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
737
{
738
buf++;
739
*buf += 0x20;
740
}
741
}
742
*mem++ = *buf++;
743
}
744
return (mem);
745
}
746
747
/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
748
returned. */
749
static void
750
getpacket (char *buffer)
751
{
752
unsigned char checksum;
753
unsigned char xmitcsum;
754
int i;
755
int count;
756
char ch;
757
do {
758
while ((ch = getDebugChar ()) != '$')
759
/* Wait for the start character $ and ignore all other characters */;
760
checksum = 0;
761
xmitcsum = -1;
762
count = 0;
763
/* Read until a # or the end of the buffer is reached */
764
while (count < BUFMAX) {
765
ch = getDebugChar ();
766
if (ch == '#')
767
break;
768
checksum = checksum + ch;
769
buffer[count] = ch;
770
count = count + 1;
771
}
772
buffer[count] = '\0';
773
774
if (ch == '#') {
775
xmitcsum = hex (getDebugChar ()) << 4;
776
xmitcsum += hex (getDebugChar ());
777
if (checksum != xmitcsum) {
778
/* Wrong checksum */
779
putDebugChar ('-');
780
}
781
else {
782
/* Correct checksum */
783
putDebugChar ('+');
784
/* If sequence characters are received, reply with them */
785
if (buffer[2] == ':') {
786
putDebugChar (buffer[0]);
787
putDebugChar (buffer[1]);
788
/* Remove the sequence characters from the buffer */
789
count = gdb_cris_strlen (buffer);
790
for (i = 3; i <= count; i++)
791
buffer[i - 3] = buffer[i];
792
}
793
}
794
}
795
} while (checksum != xmitcsum);
796
}
797
798
/* Send $<data>#<checksum> from the <data> in the array buffer. */
799
800
static void
801
putpacket(char *buffer)
802
{
803
int checksum;
804
int runlen;
805
int encode;
806
807
do {
808
char *src = buffer;
809
putDebugChar ('$');
810
checksum = 0;
811
while (*src) {
812
/* Do run length encoding */
813
putDebugChar (*src);
814
checksum += *src;
815
runlen = 0;
816
while (runlen < RUNLENMAX && *src == src[runlen]) {
817
runlen++;
818
}
819
if (runlen > 3) {
820
/* Got a useful amount */
821
putDebugChar ('*');
822
checksum += '*';
823
encode = runlen + ' ' - 4;
824
putDebugChar (encode);
825
checksum += encode;
826
src += runlen;
827
}
828
else {
829
src++;
830
}
831
}
832
putDebugChar('#');
833
putDebugChar(hex_asc_hi(checksum));
834
putDebugChar(hex_asc_lo(checksum));
835
} while(kgdb_started && (getDebugChar() != '+'));
836
}
837
838
/* The string str is prepended with the GDB printout token and sent. Required
839
in traditional implementations. */
840
void
841
putDebugString (const unsigned char *str, int length)
842
{
843
remcomOutBuffer[0] = 'O';
844
mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
845
putpacket(remcomOutBuffer);
846
}
847
848
/********************************** Handle exceptions ************************/
849
/* Build and send a response packet in order to inform the host the
850
stub is stopped. TAAn...:r...;n...:r...;n...:r...;
851
AA = signal number
852
n... = register number (hex)
853
r... = register contents
854
n... = `thread'
855
r... = thread process ID. This is a hex integer.
856
n... = other string not starting with valid hex digit.
857
gdb should ignore this n,r pair and go on to the next.
858
This way we can extend the protocol. */
859
static void
860
stub_is_stopped(int sigval)
861
{
862
char *ptr = remcomOutBuffer;
863
int regno;
864
865
unsigned int reg_cont;
866
int status;
867
868
/* Send trap type (converted to signal) */
869
870
*ptr++ = 'T';
871
ptr = pack_hex_byte(ptr, sigval);
872
873
/* Send register contents. We probably only need to send the
874
* PC, frame pointer and stack pointer here. Other registers will be
875
* explicitly asked for. But for now, send all.
876
*/
877
878
for (regno = R0; regno <= USP; regno++) {
879
/* Store n...:r...; for the registers in the buffer. */
880
881
status = read_register (regno, &reg_cont);
882
883
if (status == SUCCESS) {
884
ptr = pack_hex_byte(ptr, regno);
885
*ptr++ = ':';
886
887
ptr = mem2hex(ptr, (unsigned char *)&reg_cont,
888
register_size[regno]);
889
*ptr++ = ';';
890
}
891
892
}
893
894
#ifdef PROCESS_SUPPORT
895
/* Store the registers of the executing thread. Assume that both step,
896
continue, and register content requests are with respect to this
897
thread. The executing task is from the operating system scheduler. */
898
899
current_thread_c = executing_task;
900
current_thread_g = executing_task;
901
902
/* A struct assignment translates into a libc memcpy call. Avoid
903
all libc functions in order to prevent recursive break points. */
904
copy_registers (&reg_g, &reg, sizeof(registers));
905
906
/* Store thread:r...; with the executing task TID. */
907
gdb_cris_strcpy (&remcomOutBuffer[pos], "thread:");
908
pos += gdb_cris_strlen ("thread:");
909
remcomOutBuffer[pos++] = hex_asc_hi(executing_task);
910
remcomOutBuffer[pos++] = hex_asc_lo(executing_task);
911
gdb_cris_strcpy (&remcomOutBuffer[pos], ";");
912
#endif
913
914
/* null-terminate and send it off */
915
916
*ptr = 0;
917
918
putpacket (remcomOutBuffer);
919
}
920
921
/* All expected commands are sent from remote.c. Send a response according
922
to the description in remote.c. */
923
static void
924
handle_exception (int sigval)
925
{
926
/* Avoid warning of not used. */
927
928
USEDFUN(handle_exception);
929
USEDVAR(internal_stack[0]);
930
931
/* Send response. */
932
933
stub_is_stopped (sigval);
934
935
for (;;) {
936
remcomOutBuffer[0] = '\0';
937
getpacket (remcomInBuffer);
938
switch (remcomInBuffer[0]) {
939
case 'g':
940
/* Read registers: g
941
Success: Each byte of register data is described by two hex digits.
942
Registers are in the internal order for GDB, and the bytes
943
in a register are in the same order the machine uses.
944
Failure: void. */
945
946
{
947
#ifdef PROCESS_SUPPORT
948
/* Use the special register content in the executing thread. */
949
copy_registers (&reg_g, &reg, sizeof(registers));
950
/* Replace the content available on the stack. */
951
if (current_thread_g != executing_task) {
952
copy_registers_from_stack (current_thread_g, &reg_g);
953
}
954
mem2hex ((unsigned char *)remcomOutBuffer, (unsigned char *)&reg_g, sizeof(registers));
955
#else
956
mem2hex(remcomOutBuffer, (char *)&reg, sizeof(registers));
957
#endif
958
}
959
break;
960
961
case 'G':
962
/* Write registers. GXX..XX
963
Each byte of register data is described by two hex digits.
964
Success: OK
965
Failure: void. */
966
#ifdef PROCESS_SUPPORT
967
hex2mem ((unsigned char *)&reg_g, &remcomInBuffer[1], sizeof(registers));
968
if (current_thread_g == executing_task) {
969
copy_registers (&reg, &reg_g, sizeof(registers));
970
}
971
else {
972
copy_registers_to_stack(current_thread_g, &reg_g);
973
}
974
#else
975
hex2mem((char *)&reg, &remcomInBuffer[1], sizeof(registers));
976
#endif
977
gdb_cris_strcpy (remcomOutBuffer, "OK");
978
break;
979
980
case 'P':
981
/* Write register. Pn...=r...
982
Write register n..., hex value without 0x, with value r...,
983
which contains a hex value without 0x and two hex digits
984
for each byte in the register (target byte order). P1f=11223344 means
985
set register 31 to 44332211.
986
Success: OK
987
Failure: E02, E05 */
988
{
989
char *suffix;
990
int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
991
int status;
992
#ifdef PROCESS_SUPPORT
993
if (current_thread_g != executing_task)
994
status = write_stack_register (current_thread_g, regno, suffix+1);
995
else
996
#endif
997
status = write_register (regno, suffix+1);
998
999
switch (status) {
1000
case E02:
1001
/* Do not support read-only registers. */
1002
gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
1003
break;
1004
case E05:
1005
/* Do not support non-existing registers. */
1006
gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
1007
break;
1008
case E07:
1009
/* Do not support non-existing registers on the stack. */
1010
gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
1011
break;
1012
default:
1013
/* Valid register number. */
1014
gdb_cris_strcpy (remcomOutBuffer, "OK");
1015
break;
1016
}
1017
}
1018
break;
1019
1020
case 'm':
1021
/* Read from memory. mAA..AA,LLLL
1022
AA..AA is the address and LLLL is the length.
1023
Success: XX..XX is the memory content. Can be fewer bytes than
1024
requested if only part of the data may be read. m6000120a,6c means
1025
retrieve 108 byte from base address 6000120a.
1026
Failure: void. */
1027
{
1028
char *suffix;
1029
unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1030
&suffix, 16); int length = gdb_cris_strtol(suffix+1, 0, 16);
1031
1032
mem2hex(remcomOutBuffer, addr, length);
1033
}
1034
break;
1035
1036
case 'X':
1037
/* Write to memory. XAA..AA,LLLL:XX..XX
1038
AA..AA is the start address, LLLL is the number of bytes, and
1039
XX..XX is the binary data.
1040
Success: OK
1041
Failure: void. */
1042
case 'M':
1043
/* Write to memory. MAA..AA,LLLL:XX..XX
1044
AA..AA is the start address, LLLL is the number of bytes, and
1045
XX..XX is the hexadecimal data.
1046
Success: OK
1047
Failure: void. */
1048
{
1049
char *lenptr;
1050
char *dataptr;
1051
unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1052
&lenptr, 16);
1053
int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
1054
if (*lenptr == ',' && *dataptr == ':') {
1055
if (remcomInBuffer[0] == 'M') {
1056
hex2mem(addr, dataptr + 1, length);
1057
}
1058
else /* X */ {
1059
bin2mem(addr, dataptr + 1, length);
1060
}
1061
gdb_cris_strcpy (remcomOutBuffer, "OK");
1062
}
1063
else {
1064
gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
1065
}
1066
}
1067
break;
1068
1069
case 'c':
1070
/* Continue execution. cAA..AA
1071
AA..AA is the address where execution is resumed. If AA..AA is
1072
omitted, resume at the present address.
1073
Success: return to the executing thread.
1074
Failure: will never know. */
1075
if (remcomInBuffer[1] != '\0') {
1076
reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1077
}
1078
enableDebugIRQ();
1079
return;
1080
1081
case 's':
1082
/* Step. sAA..AA
1083
AA..AA is the address where execution is resumed. If AA..AA is
1084
omitted, resume at the present address. Success: return to the
1085
executing thread. Failure: will never know.
1086
1087
Should never be invoked. The single-step is implemented on
1088
the host side. If ever invoked, it is an internal error E04. */
1089
gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1090
putpacket (remcomOutBuffer);
1091
return;
1092
1093
case '?':
1094
/* The last signal which caused a stop. ?
1095
Success: SAA, where AA is the signal number.
1096
Failure: void. */
1097
remcomOutBuffer[0] = 'S';
1098
remcomOutBuffer[1] = hex_asc_hi(sigval);
1099
remcomOutBuffer[2] = hex_asc_lo(sigval);
1100
remcomOutBuffer[3] = 0;
1101
break;
1102
1103
case 'D':
1104
/* Detach from host. D
1105
Success: OK, and return to the executing thread.
1106
Failure: will never know */
1107
putpacket ("OK");
1108
return;
1109
1110
case 'k':
1111
case 'r':
1112
/* kill request or reset request.
1113
Success: restart of target.
1114
Failure: will never know. */
1115
kill_restart ();
1116
break;
1117
1118
case 'C':
1119
case 'S':
1120
case '!':
1121
case 'R':
1122
case 'd':
1123
/* Continue with signal sig. Csig;AA..AA
1124
Step with signal sig. Ssig;AA..AA
1125
Use the extended remote protocol. !
1126
Restart the target system. R0
1127
Toggle debug flag. d
1128
Search backwards. tAA:PP,MM
1129
Not supported: E04 */
1130
gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1131
break;
1132
#ifdef PROCESS_SUPPORT
1133
1134
case 'T':
1135
/* Thread alive. TXX
1136
Is thread XX alive?
1137
Success: OK, thread XX is alive.
1138
Failure: E03, thread XX is dead. */
1139
{
1140
int thread_id = (int)gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1141
/* Cannot tell whether it is alive or not. */
1142
if (thread_id >= 0 && thread_id < number_of_tasks)
1143
gdb_cris_strcpy (remcomOutBuffer, "OK");
1144
}
1145
break;
1146
1147
case 'H':
1148
/* Set thread for subsequent operations: Hct
1149
c = 'c' for thread used in step and continue;
1150
t can be -1 for all threads.
1151
c = 'g' for thread used in other operations.
1152
t = 0 means pick any thread.
1153
Success: OK
1154
Failure: E01 */
1155
{
1156
int thread_id = gdb_cris_strtol (&remcomInBuffer[2], 0, 16);
1157
if (remcomInBuffer[1] == 'c') {
1158
/* c = 'c' for thread used in step and continue */
1159
/* Do not change current_thread_c here. It would create a mess in
1160
the scheduler. */
1161
gdb_cris_strcpy (remcomOutBuffer, "OK");
1162
}
1163
else if (remcomInBuffer[1] == 'g') {
1164
/* c = 'g' for thread used in other operations.
1165
t = 0 means pick any thread. Impossible since the scheduler does
1166
not allow that. */
1167
if (thread_id >= 0 && thread_id < number_of_tasks) {
1168
current_thread_g = thread_id;
1169
gdb_cris_strcpy (remcomOutBuffer, "OK");
1170
}
1171
else {
1172
/* Not expected - send an error message. */
1173
gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1174
}
1175
}
1176
else {
1177
/* Not expected - send an error message. */
1178
gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1179
}
1180
}
1181
break;
1182
1183
case 'q':
1184
case 'Q':
1185
/* Query of general interest. qXXXX
1186
Set general value XXXX. QXXXX=yyyy */
1187
{
1188
int pos;
1189
int nextpos;
1190
int thread_id;
1191
1192
switch (remcomInBuffer[1]) {
1193
case 'C':
1194
/* Identify the remote current thread. */
1195
gdb_cris_strcpy (&remcomOutBuffer[0], "QC");
1196
remcomOutBuffer[2] = hex_asc_hi(current_thread_c);
1197
remcomOutBuffer[3] = hex_asc_lo(current_thread_c);
1198
remcomOutBuffer[4] = '\0';
1199
break;
1200
case 'L':
1201
gdb_cris_strcpy (&remcomOutBuffer[0], "QM");
1202
/* Reply with number of threads. */
1203
if (os_is_started()) {
1204
remcomOutBuffer[2] = hex_asc_hi(number_of_tasks);
1205
remcomOutBuffer[3] = hex_asc_lo(number_of_tasks);
1206
}
1207
else {
1208
remcomOutBuffer[2] = hex_asc_hi(0);
1209
remcomOutBuffer[3] = hex_asc_lo(1);
1210
}
1211
/* Done with the reply. */
1212
remcomOutBuffer[4] = hex_asc_lo(1);
1213
pos = 5;
1214
/* Expects the argument thread id. */
1215
for (; pos < (5 + HEXCHARS_IN_THREAD_ID); pos++)
1216
remcomOutBuffer[pos] = remcomInBuffer[pos];
1217
/* Reply with the thread identifiers. */
1218
if (os_is_started()) {
1219
/* Store the thread identifiers of all tasks. */
1220
for (thread_id = 0; thread_id < number_of_tasks; thread_id++) {
1221
nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1222
for (; pos < nextpos; pos ++)
1223
remcomOutBuffer[pos] = hex_asc_lo(0);
1224
remcomOutBuffer[pos++] = hex_asc_lo(thread_id);
1225
}
1226
}
1227
else {
1228
/* Store the thread identifier of the boot task. */
1229
nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1230
for (; pos < nextpos; pos ++)
1231
remcomOutBuffer[pos] = hex_asc_lo(0);
1232
remcomOutBuffer[pos++] = hex_asc_lo(current_thread_c);
1233
}
1234
remcomOutBuffer[pos] = '\0';
1235
break;
1236
default:
1237
/* Not supported: "" */
1238
/* Request information about section offsets: qOffsets. */
1239
remcomOutBuffer[0] = 0;
1240
break;
1241
}
1242
}
1243
break;
1244
#endif /* PROCESS_SUPPORT */
1245
1246
default:
1247
/* The stub should ignore other request and send an empty
1248
response ($#<checksum>). This way we can extend the protocol and GDB
1249
can tell whether the stub it is talking to uses the old or the new. */
1250
remcomOutBuffer[0] = 0;
1251
break;
1252
}
1253
putpacket(remcomOutBuffer);
1254
}
1255
}
1256
1257
/* Performs a complete re-start from scratch. */
1258
static void
1259
kill_restart ()
1260
{
1261
machine_restart("");
1262
}
1263
1264
/********************************** Breakpoint *******************************/
1265
/* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
1266
An internal stack is used by the stub. The register image of the caller is
1267
stored in the structure register_image.
1268
Interactive communication with the host is handled by handle_exception and
1269
finally the register image is restored. */
1270
1271
void kgdb_handle_breakpoint(void);
1272
1273
asm ("
1274
.global kgdb_handle_breakpoint
1275
kgdb_handle_breakpoint:
1276
;;
1277
;; Response to the break-instruction
1278
;;
1279
;; Create a register image of the caller
1280
;;
1281
move $dccr,[reg+0x5E] ; Save the flags in DCCR before disable interrupts
1282
di ; Disable interrupts
1283
move.d $r0,[reg] ; Save R0
1284
move.d $r1,[reg+0x04] ; Save R1
1285
move.d $r2,[reg+0x08] ; Save R2
1286
move.d $r3,[reg+0x0C] ; Save R3
1287
move.d $r4,[reg+0x10] ; Save R4
1288
move.d $r5,[reg+0x14] ; Save R5
1289
move.d $r6,[reg+0x18] ; Save R6
1290
move.d $r7,[reg+0x1C] ; Save R7
1291
move.d $r8,[reg+0x20] ; Save R8
1292
move.d $r9,[reg+0x24] ; Save R9
1293
move.d $r10,[reg+0x28] ; Save R10
1294
move.d $r11,[reg+0x2C] ; Save R11
1295
move.d $r12,[reg+0x30] ; Save R12
1296
move.d $r13,[reg+0x34] ; Save R13
1297
move.d $sp,[reg+0x38] ; Save SP (R14)
1298
;; Due to the old assembler-versions BRP might not be recognized
1299
.word 0xE670 ; move brp,$r0
1300
subq 2,$r0 ; Set to address of previous instruction.
1301
move.d $r0,[reg+0x3c] ; Save the address in PC (R15)
1302
clear.b [reg+0x40] ; Clear P0
1303
move $vr,[reg+0x41] ; Save special register P1
1304
clear.w [reg+0x42] ; Clear P4
1305
move $ccr,[reg+0x44] ; Save special register CCR
1306
move $mof,[reg+0x46] ; P7
1307
clear.d [reg+0x4A] ; Clear P8
1308
move $ibr,[reg+0x4E] ; P9,
1309
move $irp,[reg+0x52] ; P10,
1310
move $srp,[reg+0x56] ; P11,
1311
move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1312
; P13, register DCCR already saved
1313
;; Due to the old assembler-versions BRP might not be recognized
1314
.word 0xE670 ; move brp,r0
1315
;; Static (compiled) breakpoints must return to the next instruction in order
1316
;; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction
1317
;; in order to execute it when execution is continued.
1318
test.b [is_dyn_brkp] ; Is this a dynamic breakpoint?
1319
beq is_static ; No, a static breakpoint
1320
nop
1321
subq 2,$r0 ; rerun the instruction the break replaced
1322
is_static:
1323
moveq 1,$r1
1324
move.b $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint
1325
move.d $r0,[reg+0x62] ; Save the return address in BRP
1326
move $usp,[reg+0x66] ; USP
1327
;;
1328
;; Handle the communication
1329
;;
1330
move.d internal_stack+1020,$sp ; Use the internal stack which grows upward
1331
moveq 5,$r10 ; SIGTRAP
1332
jsr handle_exception ; Interactive routine
1333
;;
1334
;; Return to the caller
1335
;;
1336
move.d [reg],$r0 ; Restore R0
1337
move.d [reg+0x04],$r1 ; Restore R1
1338
move.d [reg+0x08],$r2 ; Restore R2
1339
move.d [reg+0x0C],$r3 ; Restore R3
1340
move.d [reg+0x10],$r4 ; Restore R4
1341
move.d [reg+0x14],$r5 ; Restore R5
1342
move.d [reg+0x18],$r6 ; Restore R6
1343
move.d [reg+0x1C],$r7 ; Restore R7
1344
move.d [reg+0x20],$r8 ; Restore R8
1345
move.d [reg+0x24],$r9 ; Restore R9
1346
move.d [reg+0x28],$r10 ; Restore R10
1347
move.d [reg+0x2C],$r11 ; Restore R11
1348
move.d [reg+0x30],$r12 ; Restore R12
1349
move.d [reg+0x34],$r13 ; Restore R13
1350
;;
1351
;; FIXME: Which registers should be restored?
1352
;;
1353
move.d [reg+0x38],$sp ; Restore SP (R14)
1354
move [reg+0x56],$srp ; Restore the subroutine return pointer.
1355
move [reg+0x5E],$dccr ; Restore DCCR
1356
move [reg+0x66],$usp ; Restore USP
1357
jump [reg+0x62] ; A jump to the content in register BRP works.
1358
nop ;
1359
");
1360
1361
/* The hook for an interrupt generated by GDB. An internal stack is used
1362
by the stub. The register image of the caller is stored in the structure
1363
register_image. Interactive communication with the host is handled by
1364
handle_exception and finally the register image is restored. Due to the
1365
old assembler which does not recognise the break instruction and the
1366
breakpoint return pointer hex-code is used. */
1367
1368
void kgdb_handle_serial(void);
1369
1370
asm ("
1371
.global kgdb_handle_serial
1372
kgdb_handle_serial:
1373
;;
1374
;; Response to a serial interrupt
1375
;;
1376
1377
move $dccr,[reg+0x5E] ; Save the flags in DCCR
1378
di ; Disable interrupts
1379
move.d $r0,[reg] ; Save R0
1380
move.d $r1,[reg+0x04] ; Save R1
1381
move.d $r2,[reg+0x08] ; Save R2
1382
move.d $r3,[reg+0x0C] ; Save R3
1383
move.d $r4,[reg+0x10] ; Save R4
1384
move.d $r5,[reg+0x14] ; Save R5
1385
move.d $r6,[reg+0x18] ; Save R6
1386
move.d $r7,[reg+0x1C] ; Save R7
1387
move.d $r8,[reg+0x20] ; Save R8
1388
move.d $r9,[reg+0x24] ; Save R9
1389
move.d $r10,[reg+0x28] ; Save R10
1390
move.d $r11,[reg+0x2C] ; Save R11
1391
move.d $r12,[reg+0x30] ; Save R12
1392
move.d $r13,[reg+0x34] ; Save R13
1393
move.d $sp,[reg+0x38] ; Save SP (R14)
1394
move $irp,[reg+0x3c] ; Save the address in PC (R15)
1395
clear.b [reg+0x40] ; Clear P0
1396
move $vr,[reg+0x41] ; Save special register P1,
1397
clear.w [reg+0x42] ; Clear P4
1398
move $ccr,[reg+0x44] ; Save special register CCR
1399
move $mof,[reg+0x46] ; P7
1400
clear.d [reg+0x4A] ; Clear P8
1401
move $ibr,[reg+0x4E] ; P9,
1402
move $irp,[reg+0x52] ; P10,
1403
move $srp,[reg+0x56] ; P11,
1404
move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1405
; P13, register DCCR already saved
1406
;; Due to the old assembler-versions BRP might not be recognized
1407
.word 0xE670 ; move brp,r0
1408
move.d $r0,[reg+0x62] ; Save the return address in BRP
1409
move $usp,[reg+0x66] ; USP
1410
1411
;; get the serial character (from debugport.c) and check if it is a ctrl-c
1412
1413
jsr getDebugChar
1414
cmp.b 3, $r10
1415
bne goback
1416
nop
1417
1418
move.d [reg+0x5E], $r10 ; Get DCCR
1419
btstq 8, $r10 ; Test the U-flag.
1420
bmi goback
1421
nop
1422
1423
;;
1424
;; Handle the communication
1425
;;
1426
move.d internal_stack+1020,$sp ; Use the internal stack
1427
moveq 2,$r10 ; SIGINT
1428
jsr handle_exception ; Interactive routine
1429
1430
goback:
1431
;;
1432
;; Return to the caller
1433
;;
1434
move.d [reg],$r0 ; Restore R0
1435
move.d [reg+0x04],$r1 ; Restore R1
1436
move.d [reg+0x08],$r2 ; Restore R2
1437
move.d [reg+0x0C],$r3 ; Restore R3
1438
move.d [reg+0x10],$r4 ; Restore R4
1439
move.d [reg+0x14],$r5 ; Restore R5
1440
move.d [reg+0x18],$r6 ; Restore R6
1441
move.d [reg+0x1C],$r7 ; Restore R7
1442
move.d [reg+0x20],$r8 ; Restore R8
1443
move.d [reg+0x24],$r9 ; Restore R9
1444
move.d [reg+0x28],$r10 ; Restore R10
1445
move.d [reg+0x2C],$r11 ; Restore R11
1446
move.d [reg+0x30],$r12 ; Restore R12
1447
move.d [reg+0x34],$r13 ; Restore R13
1448
;;
1449
;; FIXME: Which registers should be restored?
1450
;;
1451
move.d [reg+0x38],$sp ; Restore SP (R14)
1452
move [reg+0x56],$srp ; Restore the subroutine return pointer.
1453
move [reg+0x5E],$dccr ; Restore DCCR
1454
move [reg+0x66],$usp ; Restore USP
1455
reti ; Return from the interrupt routine
1456
nop
1457
");
1458
1459
/* Use this static breakpoint in the start-up only. */
1460
1461
void
1462
breakpoint(void)
1463
{
1464
kgdb_started = 1;
1465
is_dyn_brkp = 0; /* This is a static, not a dynamic breakpoint. */
1466
__asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1467
}
1468
1469
/* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1470
1471
void
1472
kgdb_init(void)
1473
{
1474
/* could initialize debug port as well but it's done in head.S already... */
1475
1476
/* breakpoint handler is now set in irq.c */
1477
set_int_vector(8, kgdb_handle_serial);
1478
1479
enableDebugIRQ();
1480
}
1481
1482
/****************************** End of file **********************************/
1483
1484