Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/cris/arch-v10/mm/init.c
15125 views
1
/*
2
* linux/arch/cris/arch-v10/mm/init.c
3
*
4
*/
5
#include <linux/mmzone.h>
6
#include <linux/init.h>
7
#include <linux/bootmem.h>
8
#include <linux/mm.h>
9
#include <asm/pgtable.h>
10
#include <asm/page.h>
11
#include <asm/types.h>
12
#include <asm/mmu.h>
13
#include <asm/io.h>
14
#include <asm/mmu_context.h>
15
#include <arch/svinto.h>
16
17
extern void tlb_init(void);
18
19
/*
20
* The kernel is already mapped with a kernel segment at kseg_c so
21
* we don't need to map it with a page table. However head.S also
22
* temporarily mapped it at kseg_4 so we should set up the ksegs again,
23
* clear the TLB and do some other paging setup stuff.
24
*/
25
26
void __init
27
paging_init(void)
28
{
29
int i;
30
unsigned long zones_size[MAX_NR_ZONES];
31
32
printk("Setting up paging and the MMU.\n");
33
34
/* clear out the init_mm.pgd that will contain the kernel's mappings */
35
36
for(i = 0; i < PTRS_PER_PGD; i++)
37
swapper_pg_dir[i] = __pgd(0);
38
39
/* make sure the current pgd table points to something sane
40
* (even if it is most probably not used until the next
41
* switch_mm)
42
*/
43
44
per_cpu(current_pgd, smp_processor_id()) = init_mm.pgd;
45
46
/* initialise the TLB (tlb.c) */
47
48
tlb_init();
49
50
/* see README.mm for details on the KSEG setup */
51
52
#ifdef CONFIG_CRIS_LOW_MAP
53
/* Etrax-100 LX version 1 has a bug so that we cannot map anything
54
* across the 0x80000000 boundary, so we need to shrink the user-virtual
55
* area to 0x50000000 instead of 0xb0000000 and map things slightly
56
* different. The unused areas are marked as paged so that we can catch
57
* freak kernel accesses there.
58
*
59
* The ARTPEC chip is mapped at 0xa so we pass that segment straight
60
* through. We cannot vremap it because the vmalloc area is below 0x8
61
* and Juliette needs an uncached area above 0x8.
62
*
63
* Same thing with 0xc and 0x9, which is memory-mapped I/O on some boards.
64
* We map them straight over in LOW_MAP, but use vremap in LX version 2.
65
*/
66
67
#define CACHED_BOOTROM (KSEG_F | 0x08000000UL)
68
69
*R_MMU_KSEG = ( IO_STATE(R_MMU_KSEG, seg_f, seg ) | /* bootrom */
70
IO_STATE(R_MMU_KSEG, seg_e, page ) |
71
IO_STATE(R_MMU_KSEG, seg_d, page ) |
72
IO_STATE(R_MMU_KSEG, seg_c, page ) |
73
IO_STATE(R_MMU_KSEG, seg_b, seg ) | /* kernel reg area */
74
#ifdef CONFIG_JULIETTE
75
IO_STATE(R_MMU_KSEG, seg_a, seg ) | /* ARTPEC etc. */
76
#else
77
IO_STATE(R_MMU_KSEG, seg_a, page ) |
78
#endif
79
IO_STATE(R_MMU_KSEG, seg_9, seg ) | /* LED's on some boards */
80
IO_STATE(R_MMU_KSEG, seg_8, seg ) | /* CSE0/1, flash and I/O */
81
IO_STATE(R_MMU_KSEG, seg_7, page ) | /* kernel vmalloc area */
82
IO_STATE(R_MMU_KSEG, seg_6, seg ) | /* kernel DRAM area */
83
IO_STATE(R_MMU_KSEG, seg_5, seg ) | /* cached flash */
84
IO_STATE(R_MMU_KSEG, seg_4, page ) | /* user area */
85
IO_STATE(R_MMU_KSEG, seg_3, page ) | /* user area */
86
IO_STATE(R_MMU_KSEG, seg_2, page ) | /* user area */
87
IO_STATE(R_MMU_KSEG, seg_1, page ) | /* user area */
88
IO_STATE(R_MMU_KSEG, seg_0, page ) ); /* user area */
89
90
*R_MMU_KBASE_HI = ( IO_FIELD(R_MMU_KBASE_HI, base_f, 0x3 ) |
91
IO_FIELD(R_MMU_KBASE_HI, base_e, 0x0 ) |
92
IO_FIELD(R_MMU_KBASE_HI, base_d, 0x0 ) |
93
IO_FIELD(R_MMU_KBASE_HI, base_c, 0x0 ) |
94
IO_FIELD(R_MMU_KBASE_HI, base_b, 0xb ) |
95
#ifdef CONFIG_JULIETTE
96
IO_FIELD(R_MMU_KBASE_HI, base_a, 0xa ) |
97
#else
98
IO_FIELD(R_MMU_KBASE_HI, base_a, 0x0 ) |
99
#endif
100
IO_FIELD(R_MMU_KBASE_HI, base_9, 0x9 ) |
101
IO_FIELD(R_MMU_KBASE_HI, base_8, 0x8 ) );
102
103
*R_MMU_KBASE_LO = ( IO_FIELD(R_MMU_KBASE_LO, base_7, 0x0 ) |
104
IO_FIELD(R_MMU_KBASE_LO, base_6, 0x4 ) |
105
IO_FIELD(R_MMU_KBASE_LO, base_5, 0x0 ) |
106
IO_FIELD(R_MMU_KBASE_LO, base_4, 0x0 ) |
107
IO_FIELD(R_MMU_KBASE_LO, base_3, 0x0 ) |
108
IO_FIELD(R_MMU_KBASE_LO, base_2, 0x0 ) |
109
IO_FIELD(R_MMU_KBASE_LO, base_1, 0x0 ) |
110
IO_FIELD(R_MMU_KBASE_LO, base_0, 0x0 ) );
111
#else
112
/* This code is for the corrected Etrax-100 LX version 2... */
113
114
#define CACHED_BOOTROM (KSEG_A | 0x08000000UL)
115
116
*R_MMU_KSEG = ( IO_STATE(R_MMU_KSEG, seg_f, seg ) | /* cached flash */
117
IO_STATE(R_MMU_KSEG, seg_e, seg ) | /* uncached flash */
118
IO_STATE(R_MMU_KSEG, seg_d, page ) | /* vmalloc area */
119
IO_STATE(R_MMU_KSEG, seg_c, seg ) | /* kernel area */
120
IO_STATE(R_MMU_KSEG, seg_b, seg ) | /* kernel reg area */
121
IO_STATE(R_MMU_KSEG, seg_a, seg ) | /* bootrom */
122
IO_STATE(R_MMU_KSEG, seg_9, page ) | /* user area */
123
IO_STATE(R_MMU_KSEG, seg_8, page ) |
124
IO_STATE(R_MMU_KSEG, seg_7, page ) |
125
IO_STATE(R_MMU_KSEG, seg_6, page ) |
126
IO_STATE(R_MMU_KSEG, seg_5, page ) |
127
IO_STATE(R_MMU_KSEG, seg_4, page ) |
128
IO_STATE(R_MMU_KSEG, seg_3, page ) |
129
IO_STATE(R_MMU_KSEG, seg_2, page ) |
130
IO_STATE(R_MMU_KSEG, seg_1, page ) |
131
IO_STATE(R_MMU_KSEG, seg_0, page ) );
132
133
*R_MMU_KBASE_HI = ( IO_FIELD(R_MMU_KBASE_HI, base_f, 0x0 ) |
134
IO_FIELD(R_MMU_KBASE_HI, base_e, 0x8 ) |
135
IO_FIELD(R_MMU_KBASE_HI, base_d, 0x0 ) |
136
IO_FIELD(R_MMU_KBASE_HI, base_c, 0x4 ) |
137
IO_FIELD(R_MMU_KBASE_HI, base_b, 0xb ) |
138
IO_FIELD(R_MMU_KBASE_HI, base_a, 0x3 ) |
139
IO_FIELD(R_MMU_KBASE_HI, base_9, 0x0 ) |
140
IO_FIELD(R_MMU_KBASE_HI, base_8, 0x0 ) );
141
142
*R_MMU_KBASE_LO = ( IO_FIELD(R_MMU_KBASE_LO, base_7, 0x0 ) |
143
IO_FIELD(R_MMU_KBASE_LO, base_6, 0x0 ) |
144
IO_FIELD(R_MMU_KBASE_LO, base_5, 0x0 ) |
145
IO_FIELD(R_MMU_KBASE_LO, base_4, 0x0 ) |
146
IO_FIELD(R_MMU_KBASE_LO, base_3, 0x0 ) |
147
IO_FIELD(R_MMU_KBASE_LO, base_2, 0x0 ) |
148
IO_FIELD(R_MMU_KBASE_LO, base_1, 0x0 ) |
149
IO_FIELD(R_MMU_KBASE_LO, base_0, 0x0 ) );
150
#endif
151
152
*R_MMU_CONTEXT = ( IO_FIELD(R_MMU_CONTEXT, page_id, 0 ) );
153
154
/* The MMU has been enabled ever since head.S but just to make
155
* it totally obvious we do it here as well.
156
*/
157
158
*R_MMU_CTRL = ( IO_STATE(R_MMU_CTRL, inv_excp, enable ) |
159
IO_STATE(R_MMU_CTRL, acc_excp, enable ) |
160
IO_STATE(R_MMU_CTRL, we_excp, enable ) );
161
162
*R_MMU_ENABLE = IO_STATE(R_MMU_ENABLE, mmu_enable, enable);
163
164
/*
165
* initialize the bad page table and bad page to point
166
* to a couple of allocated pages
167
*/
168
169
empty_zero_page = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
170
memset((void *)empty_zero_page, 0, PAGE_SIZE);
171
172
/* All pages are DMA'able in Etrax, so put all in the DMA'able zone */
173
174
zones_size[0] = ((unsigned long)high_memory - PAGE_OFFSET) >> PAGE_SHIFT;
175
176
for (i = 1; i < MAX_NR_ZONES; i++)
177
zones_size[i] = 0;
178
179
/* Use free_area_init_node instead of free_area_init, because the former
180
* is designed for systems where the DRAM starts at an address substantially
181
* higher than 0, like us (we start at PAGE_OFFSET). This saves space in the
182
* mem_map page array.
183
*/
184
185
free_area_init_node(0, zones_size, PAGE_OFFSET >> PAGE_SHIFT, 0);
186
}
187
188
/* Initialize remaps of some I/O-ports. It is important that this
189
* is called before any driver is initialized.
190
*/
191
192
static int
193
__init init_ioremap(void)
194
{
195
196
/* Give the external I/O-port addresses their values */
197
198
#ifdef CONFIG_CRIS_LOW_MAP
199
/* Simply a linear map (see the KSEG map above in paging_init) */
200
port_cse1_addr = (volatile unsigned long *)(MEM_CSE1_START |
201
MEM_NON_CACHEABLE);
202
port_csp0_addr = (volatile unsigned long *)(MEM_CSP0_START |
203
MEM_NON_CACHEABLE);
204
port_csp4_addr = (volatile unsigned long *)(MEM_CSP4_START |
205
MEM_NON_CACHEABLE);
206
#else
207
/* Note that nothing blows up just because we do this remapping
208
* it's ok even if the ports are not used or connected
209
* to anything (or connected to a non-I/O thing) */
210
port_cse1_addr = (volatile unsigned long *)
211
ioremap((unsigned long)(MEM_CSE1_START | MEM_NON_CACHEABLE), 16);
212
port_csp0_addr = (volatile unsigned long *)
213
ioremap((unsigned long)(MEM_CSP0_START | MEM_NON_CACHEABLE), 16);
214
port_csp4_addr = (volatile unsigned long *)
215
ioremap((unsigned long)(MEM_CSP4_START | MEM_NON_CACHEABLE), 16);
216
#endif
217
return 0;
218
}
219
220
__initcall(init_ioremap);
221
222
/* Helper function for the two below */
223
224
static inline void
225
flush_etrax_cacherange(void *startadr, int length)
226
{
227
/* CACHED_BOOTROM is mapped to the boot-rom area (cached) which
228
* we can use to get fast dummy-reads of cachelines
229
*/
230
231
volatile short *flushadr = (volatile short *)(((unsigned long)startadr & ~PAGE_MASK) |
232
CACHED_BOOTROM);
233
234
length = length > 8192 ? 8192 : length; /* No need to flush more than cache size */
235
236
while(length > 0) {
237
*flushadr; /* dummy read to flush */
238
flushadr += (32/sizeof(short)); /* a cacheline is 32 bytes */
239
length -= 32;
240
}
241
}
242
243
/* Due to a bug in Etrax100(LX) all versions, receiving DMA buffers
244
* will occasionally corrupt certain CPU writes if the DMA buffers
245
* happen to be hot in the cache.
246
*
247
* As a workaround, we have to flush the relevant parts of the cache
248
* before (re) inserting any receiving descriptor into the DMA HW.
249
*/
250
251
void
252
prepare_rx_descriptor(struct etrax_dma_descr *desc)
253
{
254
flush_etrax_cacherange((void *)desc->buf, desc->sw_len ? desc->sw_len : 65536);
255
}
256
257
/* Do the same thing but flush the entire cache */
258
259
void
260
flush_etrax_cache(void)
261
{
262
flush_etrax_cacherange(0, 8192);
263
}
264
265