Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/cris/arch-v32/drivers/axisflashmap.c
15126 views
1
/*
2
* Physical mapping layer for MTD using the Axis partitiontable format
3
*
4
* Copyright (c) 2001-2007 Axis Communications AB
5
*
6
* This file is under the GPL.
7
*
8
* First partition is always sector 0 regardless of if we find a partitiontable
9
* or not. In the start of the next sector, there can be a partitiontable that
10
* tells us what other partitions to define. If there isn't, we use a default
11
* partition split defined below.
12
*
13
*/
14
15
#include <linux/module.h>
16
#include <linux/types.h>
17
#include <linux/kernel.h>
18
#include <linux/init.h>
19
#include <linux/slab.h>
20
21
#include <linux/mtd/concat.h>
22
#include <linux/mtd/map.h>
23
#include <linux/mtd/mtd.h>
24
#include <linux/mtd/mtdram.h>
25
#include <linux/mtd/partitions.h>
26
27
#include <linux/cramfs_fs.h>
28
29
#include <asm/axisflashmap.h>
30
#include <asm/mmu.h>
31
32
#define MEM_CSE0_SIZE (0x04000000)
33
#define MEM_CSE1_SIZE (0x04000000)
34
35
#define FLASH_UNCACHED_ADDR KSEG_E
36
#define FLASH_CACHED_ADDR KSEG_F
37
38
#define PAGESIZE (512)
39
40
#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
41
#define flash_data __u8
42
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
43
#define flash_data __u16
44
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
45
#define flash_data __u32
46
#endif
47
48
/* From head.S */
49
extern unsigned long romfs_in_flash; /* 1 when romfs_start, _length in flash */
50
extern unsigned long romfs_start, romfs_length;
51
extern unsigned long nand_boot; /* 1 when booted from nand flash */
52
53
struct partition_name {
54
char name[6];
55
};
56
57
/* The master mtd for the entire flash. */
58
struct mtd_info* axisflash_mtd = NULL;
59
60
/* Map driver functions. */
61
62
static map_word flash_read(struct map_info *map, unsigned long ofs)
63
{
64
map_word tmp;
65
tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
66
return tmp;
67
}
68
69
static void flash_copy_from(struct map_info *map, void *to,
70
unsigned long from, ssize_t len)
71
{
72
memcpy(to, (void *)(map->map_priv_1 + from), len);
73
}
74
75
static void flash_write(struct map_info *map, map_word d, unsigned long adr)
76
{
77
*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
78
}
79
80
/*
81
* The map for chip select e0.
82
*
83
* We run into tricky coherence situations if we mix cached with uncached
84
* accesses to we only use the uncached version here.
85
*
86
* The size field is the total size where the flash chips may be mapped on the
87
* chip select. MTD probes should find all devices there and it does not matter
88
* if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
89
* probes will ignore them.
90
*
91
* The start address in map_priv_1 is in virtual memory so we cannot use
92
* MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
93
* address of cse0.
94
*/
95
static struct map_info map_cse0 = {
96
.name = "cse0",
97
.size = MEM_CSE0_SIZE,
98
.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
99
.read = flash_read,
100
.copy_from = flash_copy_from,
101
.write = flash_write,
102
.map_priv_1 = FLASH_UNCACHED_ADDR
103
};
104
105
/*
106
* The map for chip select e1.
107
*
108
* If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
109
* address, but there isn't.
110
*/
111
static struct map_info map_cse1 = {
112
.name = "cse1",
113
.size = MEM_CSE1_SIZE,
114
.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
115
.read = flash_read,
116
.copy_from = flash_copy_from,
117
.write = flash_write,
118
.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
119
};
120
121
#define MAX_PARTITIONS 7
122
#ifdef CONFIG_ETRAX_NANDBOOT
123
#define NUM_DEFAULT_PARTITIONS 4
124
#define DEFAULT_ROOTFS_PARTITION_NO 2
125
#define DEFAULT_MEDIA_SIZE 0x2000000 /* 32 megs */
126
#else
127
#define NUM_DEFAULT_PARTITIONS 3
128
#define DEFAULT_ROOTFS_PARTITION_NO (-1)
129
#define DEFAULT_MEDIA_SIZE 0x800000 /* 8 megs */
130
#endif
131
132
#if (MAX_PARTITIONS < NUM_DEFAULT_PARTITIONS)
133
#error MAX_PARTITIONS must be >= than NUM_DEFAULT_PARTITIONS
134
#endif
135
136
/* Initialize the ones normally used. */
137
static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
138
{
139
.name = "part0",
140
.size = CONFIG_ETRAX_PTABLE_SECTOR,
141
.offset = 0
142
},
143
{
144
.name = "part1",
145
.size = 0,
146
.offset = 0
147
},
148
{
149
.name = "part2",
150
.size = 0,
151
.offset = 0
152
},
153
{
154
.name = "part3",
155
.size = 0,
156
.offset = 0
157
},
158
{
159
.name = "part4",
160
.size = 0,
161
.offset = 0
162
},
163
{
164
.name = "part5",
165
.size = 0,
166
.offset = 0
167
},
168
{
169
.name = "part6",
170
.size = 0,
171
.offset = 0
172
},
173
};
174
175
176
/* If no partition-table was found, we use this default-set.
177
* Default flash size is 8MB (NOR). CONFIG_ETRAX_PTABLE_SECTOR is most
178
* likely the size of one flash block and "filesystem"-partition needs
179
* to be >=5 blocks to be able to use JFFS.
180
*/
181
static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
182
{
183
.name = "boot firmware",
184
.size = CONFIG_ETRAX_PTABLE_SECTOR,
185
.offset = 0
186
},
187
{
188
.name = "kernel",
189
.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
190
.offset = CONFIG_ETRAX_PTABLE_SECTOR
191
},
192
#define FILESYSTEM_SECTOR (11 * CONFIG_ETRAX_PTABLE_SECTOR)
193
#ifdef CONFIG_ETRAX_NANDBOOT
194
{
195
.name = "rootfs",
196
.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
197
.offset = FILESYSTEM_SECTOR
198
},
199
#undef FILESYSTEM_SECTOR
200
#define FILESYSTEM_SECTOR (21 * CONFIG_ETRAX_PTABLE_SECTOR)
201
#endif
202
{
203
.name = "rwfs",
204
.size = DEFAULT_MEDIA_SIZE - FILESYSTEM_SECTOR,
205
.offset = FILESYSTEM_SECTOR
206
}
207
};
208
209
#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
210
/* Main flash device */
211
static struct mtd_partition main_partition = {
212
.name = "main",
213
.size = 0,
214
.offset = 0
215
};
216
#endif
217
218
/* Auxiliary partition if we find another flash */
219
static struct mtd_partition aux_partition = {
220
.name = "aux",
221
.size = 0,
222
.offset = 0
223
};
224
225
/*
226
* Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
227
* chips in that order (because the amd_flash-driver is faster).
228
*/
229
static struct mtd_info *probe_cs(struct map_info *map_cs)
230
{
231
struct mtd_info *mtd_cs = NULL;
232
233
printk(KERN_INFO
234
"%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
235
map_cs->name, map_cs->size, map_cs->map_priv_1);
236
237
#ifdef CONFIG_MTD_CFI
238
mtd_cs = do_map_probe("cfi_probe", map_cs);
239
#endif
240
#ifdef CONFIG_MTD_JEDECPROBE
241
if (!mtd_cs)
242
mtd_cs = do_map_probe("jedec_probe", map_cs);
243
#endif
244
245
return mtd_cs;
246
}
247
248
/*
249
* Probe each chip select individually for flash chips. If there are chips on
250
* both cse0 and cse1, the mtd_info structs will be concatenated to one struct
251
* so that MTD partitions can cross chip boundries.
252
*
253
* The only known restriction to how you can mount your chips is that each
254
* chip select must hold similar flash chips. But you need external hardware
255
* to do that anyway and you can put totally different chips on cse0 and cse1
256
* so it isn't really much of a restriction.
257
*/
258
extern struct mtd_info* __init crisv32_nand_flash_probe (void);
259
static struct mtd_info *flash_probe(void)
260
{
261
struct mtd_info *mtd_cse0;
262
struct mtd_info *mtd_cse1;
263
struct mtd_info *mtd_total;
264
struct mtd_info *mtds[2];
265
int count = 0;
266
267
if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
268
mtds[count++] = mtd_cse0;
269
if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
270
mtds[count++] = mtd_cse1;
271
272
if (!mtd_cse0 && !mtd_cse1) {
273
/* No chip found. */
274
return NULL;
275
}
276
277
if (count > 1) {
278
/* Since the concatenation layer adds a small overhead we
279
* could try to figure out if the chips in cse0 and cse1 are
280
* identical and reprobe the whole cse0+cse1 window. But since
281
* flash chips are slow, the overhead is relatively small.
282
* So we use the MTD concatenation layer instead of further
283
* complicating the probing procedure.
284
*/
285
mtd_total = mtd_concat_create(mtds, count, "cse0+cse1");
286
if (!mtd_total) {
287
printk(KERN_ERR "%s and %s: Concatenation failed!\n",
288
map_cse0.name, map_cse1.name);
289
290
/* The best we can do now is to only use what we found
291
* at cse0. */
292
mtd_total = mtd_cse0;
293
map_destroy(mtd_cse1);
294
}
295
} else
296
mtd_total = mtd_cse0 ? mtd_cse0 : mtd_cse1;
297
298
return mtd_total;
299
}
300
301
/*
302
* Probe the flash chip(s) and, if it succeeds, read the partition-table
303
* and register the partitions with MTD.
304
*/
305
static int __init init_axis_flash(void)
306
{
307
struct mtd_info *main_mtd;
308
struct mtd_info *aux_mtd = NULL;
309
int err = 0;
310
int pidx = 0;
311
struct partitiontable_head *ptable_head = NULL;
312
struct partitiontable_entry *ptable;
313
int ptable_ok = 0;
314
static char page[PAGESIZE];
315
size_t len;
316
int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */
317
int part;
318
319
/* We need a root fs. If it resides in RAM, we need to use an
320
* MTDRAM device, so it must be enabled in the kernel config,
321
* but its size must be configured as 0 so as not to conflict
322
* with our usage.
323
*/
324
#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
325
if (!romfs_in_flash && !nand_boot) {
326
printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
327
"device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
328
panic("This kernel cannot boot from RAM!\n");
329
}
330
#endif
331
332
#ifndef CONFIG_ETRAX_VCS_SIM
333
main_mtd = flash_probe();
334
if (main_mtd)
335
printk(KERN_INFO "%s: 0x%08x bytes of NOR flash memory.\n",
336
main_mtd->name, main_mtd->size);
337
338
#ifdef CONFIG_ETRAX_NANDFLASH
339
aux_mtd = crisv32_nand_flash_probe();
340
if (aux_mtd)
341
printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
342
aux_mtd->name, aux_mtd->size);
343
344
#ifdef CONFIG_ETRAX_NANDBOOT
345
{
346
struct mtd_info *tmp_mtd;
347
348
printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
349
"making NAND flash primary device.\n");
350
tmp_mtd = main_mtd;
351
main_mtd = aux_mtd;
352
aux_mtd = tmp_mtd;
353
}
354
#endif /* CONFIG_ETRAX_NANDBOOT */
355
#endif /* CONFIG_ETRAX_NANDFLASH */
356
357
if (!main_mtd && !aux_mtd) {
358
/* There's no reason to use this module if no flash chip can
359
* be identified. Make sure that's understood.
360
*/
361
printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
362
}
363
364
#if 0 /* Dump flash memory so we can see what is going on */
365
if (main_mtd) {
366
int sectoraddr, i;
367
for (sectoraddr = 0; sectoraddr < 2*65536+4096;
368
sectoraddr += PAGESIZE) {
369
main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len,
370
page);
371
printk(KERN_INFO
372
"Sector at %d (length %d):\n",
373
sectoraddr, len);
374
for (i = 0; i < PAGESIZE; i += 16) {
375
printk(KERN_INFO
376
"%02x %02x %02x %02x "
377
"%02x %02x %02x %02x "
378
"%02x %02x %02x %02x "
379
"%02x %02x %02x %02x\n",
380
page[i] & 255, page[i+1] & 255,
381
page[i+2] & 255, page[i+3] & 255,
382
page[i+4] & 255, page[i+5] & 255,
383
page[i+6] & 255, page[i+7] & 255,
384
page[i+8] & 255, page[i+9] & 255,
385
page[i+10] & 255, page[i+11] & 255,
386
page[i+12] & 255, page[i+13] & 255,
387
page[i+14] & 255, page[i+15] & 255);
388
}
389
}
390
}
391
#endif
392
393
if (main_mtd) {
394
main_mtd->owner = THIS_MODULE;
395
axisflash_mtd = main_mtd;
396
397
loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;
398
399
/* First partition (rescue) is always set to the default. */
400
pidx++;
401
#ifdef CONFIG_ETRAX_NANDBOOT
402
/* We know where the partition table should be located,
403
* it will be in first good block after that.
404
*/
405
int blockstat;
406
do {
407
blockstat = main_mtd->block_isbad(main_mtd,
408
ptable_sector);
409
if (blockstat < 0)
410
ptable_sector = 0; /* read error */
411
else if (blockstat)
412
ptable_sector += main_mtd->erasesize;
413
} while (blockstat && ptable_sector);
414
#endif
415
if (ptable_sector) {
416
main_mtd->read(main_mtd, ptable_sector, PAGESIZE,
417
&len, page);
418
ptable_head = &((struct partitiontable *) page)->head;
419
}
420
421
#if 0 /* Dump partition table so we can see what is going on */
422
printk(KERN_INFO
423
"axisflashmap: flash read %d bytes at 0x%08x, data: "
424
"%02x %02x %02x %02x %02x %02x %02x %02x\n",
425
len, CONFIG_ETRAX_PTABLE_SECTOR,
426
page[0] & 255, page[1] & 255,
427
page[2] & 255, page[3] & 255,
428
page[4] & 255, page[5] & 255,
429
page[6] & 255, page[7] & 255);
430
printk(KERN_INFO
431
"axisflashmap: partition table offset %d, data: "
432
"%02x %02x %02x %02x %02x %02x %02x %02x\n",
433
PARTITION_TABLE_OFFSET,
434
page[PARTITION_TABLE_OFFSET+0] & 255,
435
page[PARTITION_TABLE_OFFSET+1] & 255,
436
page[PARTITION_TABLE_OFFSET+2] & 255,
437
page[PARTITION_TABLE_OFFSET+3] & 255,
438
page[PARTITION_TABLE_OFFSET+4] & 255,
439
page[PARTITION_TABLE_OFFSET+5] & 255,
440
page[PARTITION_TABLE_OFFSET+6] & 255,
441
page[PARTITION_TABLE_OFFSET+7] & 255);
442
#endif
443
}
444
445
if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
446
&& (ptable_head->size <
447
(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
448
PARTITIONTABLE_END_MARKER_SIZE))
449
&& (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
450
ptable_head->size -
451
PARTITIONTABLE_END_MARKER_SIZE)
452
== PARTITIONTABLE_END_MARKER)) {
453
/* Looks like a start, sane length and end of a
454
* partition table, lets check csum etc.
455
*/
456
struct partitiontable_entry *max_addr =
457
(struct partitiontable_entry *)
458
((unsigned long)ptable_head + sizeof(*ptable_head) +
459
ptable_head->size);
460
unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
461
unsigned char *p;
462
unsigned long csum = 0;
463
464
ptable = (struct partitiontable_entry *)
465
((unsigned long)ptable_head + sizeof(*ptable_head));
466
467
/* Lets be PARANOID, and check the checksum. */
468
p = (unsigned char*) ptable;
469
470
while (p <= (unsigned char*)max_addr) {
471
csum += *p++;
472
csum += *p++;
473
csum += *p++;
474
csum += *p++;
475
}
476
ptable_ok = (csum == ptable_head->checksum);
477
478
/* Read the entries and use/show the info. */
479
printk(KERN_INFO "axisflashmap: "
480
"Found a%s partition table at 0x%p-0x%p.\n",
481
(ptable_ok ? " valid" : "n invalid"), ptable_head,
482
max_addr);
483
484
/* We have found a working bootblock. Now read the
485
* partition table. Scan the table. It ends with 0xffffffff.
486
*/
487
while (ptable_ok
488
&& ptable->offset != PARTITIONTABLE_END_MARKER
489
&& ptable < max_addr
490
&& pidx < MAX_PARTITIONS - 1) {
491
492
axis_partitions[pidx].offset = offset + ptable->offset;
493
#ifdef CONFIG_ETRAX_NANDFLASH
494
if (main_mtd->type == MTD_NANDFLASH) {
495
axis_partitions[pidx].size =
496
(((ptable+1)->offset ==
497
PARTITIONTABLE_END_MARKER) ?
498
main_mtd->size :
499
((ptable+1)->offset + offset)) -
500
(ptable->offset + offset);
501
502
} else
503
#endif /* CONFIG_ETRAX_NANDFLASH */
504
axis_partitions[pidx].size = ptable->size;
505
#ifdef CONFIG_ETRAX_NANDBOOT
506
/* Save partition number of jffs2 ro partition.
507
* Needed if RAM booting or root file system in RAM.
508
*/
509
if (!nand_boot &&
510
ram_rootfs_partition < 0 && /* not already set */
511
ptable->type == PARTITION_TYPE_JFFS2 &&
512
(ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
513
PARTITION_FLAGS_READONLY)
514
ram_rootfs_partition = pidx;
515
#endif /* CONFIG_ETRAX_NANDBOOT */
516
pidx++;
517
ptable++;
518
}
519
}
520
521
/* Decide whether to use default partition table. */
522
/* Only use default table if we actually have a device (main_mtd) */
523
524
struct mtd_partition *partition = &axis_partitions[0];
525
if (main_mtd && !ptable_ok) {
526
memcpy(axis_partitions, axis_default_partitions,
527
sizeof(axis_default_partitions));
528
pidx = NUM_DEFAULT_PARTITIONS;
529
ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
530
}
531
532
/* Add artificial partitions for rootfs if necessary */
533
if (romfs_in_flash) {
534
/* rootfs is in directly accessible flash memory = NOR flash.
535
Add an overlapping device for the rootfs partition. */
536
printk(KERN_INFO "axisflashmap: Adding partition for "
537
"overlapping root file system image\n");
538
axis_partitions[pidx].size = romfs_length;
539
axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
540
axis_partitions[pidx].name = "romfs";
541
axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
542
ram_rootfs_partition = -1;
543
pidx++;
544
} else if (romfs_length && !nand_boot) {
545
/* romfs exists in memory, but not in flash, so must be in RAM.
546
* Configure an MTDRAM partition. */
547
if (ram_rootfs_partition < 0) {
548
/* None set yet, put it at the end */
549
ram_rootfs_partition = pidx;
550
pidx++;
551
}
552
printk(KERN_INFO "axisflashmap: Adding partition for "
553
"root file system image in RAM\n");
554
axis_partitions[ram_rootfs_partition].size = romfs_length;
555
axis_partitions[ram_rootfs_partition].offset = romfs_start;
556
axis_partitions[ram_rootfs_partition].name = "romfs";
557
axis_partitions[ram_rootfs_partition].mask_flags |=
558
MTD_WRITEABLE;
559
}
560
561
#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
562
if (main_mtd) {
563
main_partition.size = main_mtd->size;
564
err = mtd_device_register(main_mtd, &main_partition, 1);
565
if (err)
566
panic("axisflashmap: Could not initialize "
567
"partition for whole main mtd device!\n");
568
}
569
#endif
570
571
/* Now, register all partitions with mtd.
572
* We do this one at a time so we can slip in an MTDRAM device
573
* in the proper place if required. */
574
575
for (part = 0; part < pidx; part++) {
576
if (part == ram_rootfs_partition) {
577
/* add MTDRAM partition here */
578
struct mtd_info *mtd_ram;
579
580
mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
581
if (!mtd_ram)
582
panic("axisflashmap: Couldn't allocate memory "
583
"for mtd_info!\n");
584
printk(KERN_INFO "axisflashmap: Adding RAM partition "
585
"for rootfs image.\n");
586
err = mtdram_init_device(mtd_ram,
587
(void *)partition[part].offset,
588
partition[part].size,
589
partition[part].name);
590
if (err)
591
panic("axisflashmap: Could not initialize "
592
"MTD RAM device!\n");
593
/* JFFS2 likes to have an erasesize. Keep potential
594
* JFFS2 rootfs happy by providing one. Since image
595
* was most likely created for main mtd, use that
596
* erasesize, if available. Otherwise, make a guess. */
597
mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
598
CONFIG_ETRAX_PTABLE_SECTOR);
599
} else {
600
err = mtd_device_register(main_mtd, &partition[part],
601
1);
602
if (err)
603
panic("axisflashmap: Could not add mtd "
604
"partition %d\n", part);
605
}
606
}
607
#endif /* CONFIG_EXTRAX_VCS_SIM */
608
609
#ifdef CONFIG_ETRAX_VCS_SIM
610
/* For simulator, always use a RAM partition.
611
* The rootfs will be found after the kernel in RAM,
612
* with romfs_start and romfs_end indicating location and size.
613
*/
614
struct mtd_info *mtd_ram;
615
616
mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
617
if (!mtd_ram) {
618
panic("axisflashmap: Couldn't allocate memory for "
619
"mtd_info!\n");
620
}
621
622
printk(KERN_INFO "axisflashmap: Adding RAM partition for romfs, "
623
"at %u, size %u\n",
624
(unsigned) romfs_start, (unsigned) romfs_length);
625
626
err = mtdram_init_device(mtd_ram, (void *)romfs_start,
627
romfs_length, "romfs");
628
if (err) {
629
panic("axisflashmap: Could not initialize MTD RAM "
630
"device!\n");
631
}
632
#endif /* CONFIG_EXTRAX_VCS_SIM */
633
634
#ifndef CONFIG_ETRAX_VCS_SIM
635
if (aux_mtd) {
636
aux_partition.size = aux_mtd->size;
637
err = mtd_device_register(aux_mtd, &aux_partition, 1);
638
if (err)
639
panic("axisflashmap: Could not initialize "
640
"aux mtd device!\n");
641
642
}
643
#endif /* CONFIG_EXTRAX_VCS_SIM */
644
645
return err;
646
}
647
648
/* This adds the above to the kernels init-call chain. */
649
module_init(init_axis_flash);
650
651
EXPORT_SYMBOL(axisflash_mtd);
652
653