Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/cris/arch-v32/kernel/smp.c
15125 views
1
#include <linux/types.h>
2
#include <asm/delay.h>
3
#include <irq.h>
4
#include <hwregs/intr_vect.h>
5
#include <hwregs/intr_vect_defs.h>
6
#include <asm/tlbflush.h>
7
#include <asm/mmu_context.h>
8
#include <hwregs/asm/mmu_defs_asm.h>
9
#include <hwregs/supp_reg.h>
10
#include <asm/atomic.h>
11
12
#include <linux/err.h>
13
#include <linux/init.h>
14
#include <linux/timex.h>
15
#include <linux/sched.h>
16
#include <linux/kernel.h>
17
#include <linux/cpumask.h>
18
#include <linux/interrupt.h>
19
#include <linux/module.h>
20
21
#define IPI_SCHEDULE 1
22
#define IPI_CALL 2
23
#define IPI_FLUSH_TLB 4
24
#define IPI_BOOT 8
25
26
#define FLUSH_ALL (void*)0xffffffff
27
28
/* Vector of locks used for various atomic operations */
29
spinlock_t cris_atomic_locks[] = {
30
[0 ... LOCK_COUNT - 1] = __SPIN_LOCK_UNLOCKED(cris_atomic_locks)
31
};
32
33
/* CPU masks */
34
cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
35
EXPORT_SYMBOL(phys_cpu_present_map);
36
37
/* Variables used during SMP boot */
38
volatile int cpu_now_booting = 0;
39
volatile struct thread_info *smp_init_current_idle_thread;
40
41
/* Variables used during IPI */
42
static DEFINE_SPINLOCK(call_lock);
43
static DEFINE_SPINLOCK(tlbstate_lock);
44
45
struct call_data_struct {
46
void (*func) (void *info);
47
void *info;
48
int wait;
49
};
50
51
static struct call_data_struct * call_data;
52
53
static struct mm_struct* flush_mm;
54
static struct vm_area_struct* flush_vma;
55
static unsigned long flush_addr;
56
57
/* Mode registers */
58
static unsigned long irq_regs[NR_CPUS] = {
59
regi_irq,
60
regi_irq2
61
};
62
63
static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id);
64
static int send_ipi(int vector, int wait, cpumask_t cpu_mask);
65
static struct irqaction irq_ipi = {
66
.handler = crisv32_ipi_interrupt,
67
.flags = IRQF_DISABLED,
68
.name = "ipi",
69
};
70
71
extern void cris_mmu_init(void);
72
extern void cris_timer_init(void);
73
74
/* SMP initialization */
75
void __init smp_prepare_cpus(unsigned int max_cpus)
76
{
77
int i;
78
79
/* From now on we can expect IPIs so set them up */
80
setup_irq(IPI_INTR_VECT, &irq_ipi);
81
82
/* Mark all possible CPUs as present */
83
for (i = 0; i < max_cpus; i++)
84
cpumask_set_cpu(i, &phys_cpu_present_map);
85
}
86
87
void __devinit smp_prepare_boot_cpu(void)
88
{
89
/* PGD pointer has moved after per_cpu initialization so
90
* update the MMU.
91
*/
92
pgd_t **pgd;
93
pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id());
94
95
SUPP_BANK_SEL(1);
96
SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
97
SUPP_BANK_SEL(2);
98
SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
99
100
set_cpu_online(0, true);
101
cpumask_set_cpu(0, &phys_cpu_present_map);
102
set_cpu_possible(0, true);
103
}
104
105
void __init smp_cpus_done(unsigned int max_cpus)
106
{
107
}
108
109
/* Bring one cpu online.*/
110
static int __init
111
smp_boot_one_cpu(int cpuid)
112
{
113
unsigned timeout;
114
struct task_struct *idle;
115
cpumask_t cpu_mask;
116
117
cpumask_clear(&cpu_mask);
118
idle = fork_idle(cpuid);
119
if (IS_ERR(idle))
120
panic("SMP: fork failed for CPU:%d", cpuid);
121
122
task_thread_info(idle)->cpu = cpuid;
123
124
/* Information to the CPU that is about to boot */
125
smp_init_current_idle_thread = task_thread_info(idle);
126
cpu_now_booting = cpuid;
127
128
/* Kick it */
129
set_cpu_online(cpuid, true);
130
cpumask_set_cpu(cpuid, &cpu_mask);
131
send_ipi(IPI_BOOT, 0, cpu_mask);
132
set_cpu_online(cpuid, false);
133
134
/* Wait for CPU to come online */
135
for (timeout = 0; timeout < 10000; timeout++) {
136
if(cpu_online(cpuid)) {
137
cpu_now_booting = 0;
138
smp_init_current_idle_thread = NULL;
139
return 0; /* CPU online */
140
}
141
udelay(100);
142
barrier();
143
}
144
145
put_task_struct(idle);
146
idle = NULL;
147
148
printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
149
return -1;
150
}
151
152
/* Secondary CPUs starts using C here. Here we need to setup CPU
153
* specific stuff such as the local timer and the MMU. */
154
void __init smp_callin(void)
155
{
156
extern void cpu_idle(void);
157
158
int cpu = cpu_now_booting;
159
reg_intr_vect_rw_mask vect_mask = {0};
160
161
/* Initialise the idle task for this CPU */
162
atomic_inc(&init_mm.mm_count);
163
current->active_mm = &init_mm;
164
165
/* Set up MMU */
166
cris_mmu_init();
167
__flush_tlb_all();
168
169
/* Setup local timer. */
170
cris_timer_init();
171
172
/* Enable IRQ and idle */
173
REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask);
174
crisv32_unmask_irq(IPI_INTR_VECT);
175
crisv32_unmask_irq(TIMER0_INTR_VECT);
176
preempt_disable();
177
notify_cpu_starting(cpu);
178
local_irq_enable();
179
180
set_cpu_online(cpu, true);
181
cpu_idle();
182
}
183
184
/* Stop execution on this CPU.*/
185
void stop_this_cpu(void* dummy)
186
{
187
local_irq_disable();
188
asm volatile("halt");
189
}
190
191
/* Other calls */
192
void smp_send_stop(void)
193
{
194
smp_call_function(stop_this_cpu, NULL, 0);
195
}
196
197
int setup_profiling_timer(unsigned int multiplier)
198
{
199
return -EINVAL;
200
}
201
202
203
/* cache_decay_ticks is used by the scheduler to decide if a process
204
* is "hot" on one CPU. A higher value means a higher penalty to move
205
* a process to another CPU. Our cache is rather small so we report
206
* 1 tick.
207
*/
208
unsigned long cache_decay_ticks = 1;
209
210
int __cpuinit __cpu_up(unsigned int cpu)
211
{
212
smp_boot_one_cpu(cpu);
213
return cpu_online(cpu) ? 0 : -ENOSYS;
214
}
215
216
void smp_send_reschedule(int cpu)
217
{
218
cpumask_t cpu_mask;
219
cpumask_clear(&cpu_mask);
220
cpumask_set_cpu(cpu, &cpu_mask);
221
send_ipi(IPI_SCHEDULE, 0, cpu_mask);
222
}
223
224
/* TLB flushing
225
*
226
* Flush needs to be done on the local CPU and on any other CPU that
227
* may have the same mapping. The mm->cpu_vm_mask is used to keep track
228
* of which CPUs that a specific process has been executed on.
229
*/
230
void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr)
231
{
232
unsigned long flags;
233
cpumask_t cpu_mask;
234
235
spin_lock_irqsave(&tlbstate_lock, flags);
236
cpu_mask = (mm == FLUSH_ALL ? cpu_all_mask : *mm_cpumask(mm));
237
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
238
flush_mm = mm;
239
flush_vma = vma;
240
flush_addr = addr;
241
send_ipi(IPI_FLUSH_TLB, 1, cpu_mask);
242
spin_unlock_irqrestore(&tlbstate_lock, flags);
243
}
244
245
void flush_tlb_all(void)
246
{
247
__flush_tlb_all();
248
flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0);
249
}
250
251
void flush_tlb_mm(struct mm_struct *mm)
252
{
253
__flush_tlb_mm(mm);
254
flush_tlb_common(mm, FLUSH_ALL, 0);
255
/* No more mappings in other CPUs */
256
cpumask_clear(mm_cpumask(mm));
257
cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
258
}
259
260
void flush_tlb_page(struct vm_area_struct *vma,
261
unsigned long addr)
262
{
263
__flush_tlb_page(vma, addr);
264
flush_tlb_common(vma->vm_mm, vma, addr);
265
}
266
267
/* Inter processor interrupts
268
*
269
* The IPIs are used for:
270
* * Force a schedule on a CPU
271
* * FLush TLB on other CPUs
272
* * Call a function on other CPUs
273
*/
274
275
int send_ipi(int vector, int wait, cpumask_t cpu_mask)
276
{
277
int i = 0;
278
reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
279
int ret = 0;
280
281
/* Calculate CPUs to send to. */
282
cpumask_and(&cpu_mask, &cpu_mask, cpu_online_mask);
283
284
/* Send the IPI. */
285
for_each_cpu(i, &cpu_mask)
286
{
287
ipi.vector |= vector;
288
REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi);
289
}
290
291
/* Wait for IPI to finish on other CPUS */
292
if (wait) {
293
for_each_cpu(i, &cpu_mask) {
294
int j;
295
for (j = 0 ; j < 1000; j++) {
296
ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
297
if (!ipi.vector)
298
break;
299
udelay(100);
300
}
301
302
/* Timeout? */
303
if (ipi.vector) {
304
printk("SMP call timeout from %d to %d\n", smp_processor_id(), i);
305
ret = -ETIMEDOUT;
306
dump_stack();
307
}
308
}
309
}
310
return ret;
311
}
312
313
/*
314
* You must not call this function with disabled interrupts or from a
315
* hardware interrupt handler or from a bottom half handler.
316
*/
317
int smp_call_function(void (*func)(void *info), void *info, int wait)
318
{
319
cpumask_t cpu_mask;
320
struct call_data_struct data;
321
int ret;
322
323
cpumask_setall(&cpu_mask);
324
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
325
326
WARN_ON(irqs_disabled());
327
328
data.func = func;
329
data.info = info;
330
data.wait = wait;
331
332
spin_lock(&call_lock);
333
call_data = &data;
334
ret = send_ipi(IPI_CALL, wait, cpu_mask);
335
spin_unlock(&call_lock);
336
337
return ret;
338
}
339
340
irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id)
341
{
342
void (*func) (void *info) = call_data->func;
343
void *info = call_data->info;
344
reg_intr_vect_rw_ipi ipi;
345
346
ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi);
347
348
if (ipi.vector & IPI_SCHEDULE) {
349
scheduler_ipi();
350
}
351
if (ipi.vector & IPI_CALL) {
352
func(info);
353
}
354
if (ipi.vector & IPI_FLUSH_TLB) {
355
if (flush_mm == FLUSH_ALL)
356
__flush_tlb_all();
357
else if (flush_vma == FLUSH_ALL)
358
__flush_tlb_mm(flush_mm);
359
else
360
__flush_tlb_page(flush_vma, flush_addr);
361
}
362
363
ipi.vector = 0;
364
REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi);
365
366
return IRQ_HANDLED;
367
}
368
369
370