Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/cris/arch-v32/mach-fs/arbiter.c
15125 views
1
/*
2
* Memory arbiter functions. Allocates bandwidth through the
3
* arbiter and sets up arbiter breakpoints.
4
*
5
* The algorithm first assigns slots to the clients that has specified
6
* bandwidth (e.g. ethernet) and then the remaining slots are divided
7
* on all the active clients.
8
*
9
* Copyright (c) 2004-2007 Axis Communications AB.
10
*/
11
12
#include <hwregs/reg_map.h>
13
#include <hwregs/reg_rdwr.h>
14
#include <hwregs/marb_defs.h>
15
#include <arbiter.h>
16
#include <hwregs/intr_vect.h>
17
#include <linux/interrupt.h>
18
#include <linux/signal.h>
19
#include <linux/errno.h>
20
#include <linux/spinlock.h>
21
#include <asm/io.h>
22
#include <asm/irq_regs.h>
23
24
struct crisv32_watch_entry {
25
unsigned long instance;
26
watch_callback *cb;
27
unsigned long start;
28
unsigned long end;
29
int used;
30
};
31
32
#define NUMBER_OF_BP 4
33
#define NBR_OF_CLIENTS 14
34
#define NBR_OF_SLOTS 64
35
#define SDRAM_BANDWIDTH 100000000 /* Some kind of expected value */
36
#define INTMEM_BANDWIDTH 400000000
37
#define NBR_OF_REGIONS 2
38
39
static struct crisv32_watch_entry watches[NUMBER_OF_BP] = {
40
{regi_marb_bp0},
41
{regi_marb_bp1},
42
{regi_marb_bp2},
43
{regi_marb_bp3}
44
};
45
46
static u8 requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
47
static u8 active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
48
static int max_bandwidth[NBR_OF_REGIONS] =
49
{ SDRAM_BANDWIDTH, INTMEM_BANDWIDTH };
50
51
DEFINE_SPINLOCK(arbiter_lock);
52
53
static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id);
54
55
/*
56
* "I'm the arbiter, I know the score.
57
* From square one I'll be watching all 64."
58
* (memory arbiter slots, that is)
59
*
60
* Or in other words:
61
* Program the memory arbiter slots for "region" according to what's
62
* in requested_slots[] and active_clients[], while minimizing
63
* latency. A caller may pass a non-zero positive amount for
64
* "unused_slots", which must then be the unallocated, remaining
65
* number of slots, free to hand out to any client.
66
*/
67
68
static void crisv32_arbiter_config(int region, int unused_slots)
69
{
70
int slot;
71
int client;
72
int interval = 0;
73
74
/*
75
* This vector corresponds to the hardware arbiter slots (see
76
* the hardware documentation for semantics). We initialize
77
* each slot with a suitable sentinel value outside the valid
78
* range {0 .. NBR_OF_CLIENTS - 1} and replace them with
79
* client indexes. Then it's fed to the hardware.
80
*/
81
s8 val[NBR_OF_SLOTS];
82
83
for (slot = 0; slot < NBR_OF_SLOTS; slot++)
84
val[slot] = -1;
85
86
for (client = 0; client < NBR_OF_CLIENTS; client++) {
87
int pos;
88
/* Allocate the requested non-zero number of slots, but
89
* also give clients with zero-requests one slot each
90
* while stocks last. We do the latter here, in client
91
* order. This makes sure zero-request clients are the
92
* first to get to any spare slots, else those slots
93
* could, when bandwidth is allocated close to the limit,
94
* all be allocated to low-index non-zero-request clients
95
* in the default-fill loop below. Another positive but
96
* secondary effect is a somewhat better spread of the
97
* zero-bandwidth clients in the vector, avoiding some of
98
* the latency that could otherwise be caused by the
99
* partitioning of non-zero-bandwidth clients at low
100
* indexes and zero-bandwidth clients at high
101
* indexes. (Note that this spreading can only affect the
102
* unallocated bandwidth.) All the above only matters for
103
* memory-intensive situations, of course.
104
*/
105
if (!requested_slots[region][client]) {
106
/*
107
* Skip inactive clients. Also skip zero-slot
108
* allocations in this pass when there are no known
109
* free slots.
110
*/
111
if (!active_clients[region][client]
112
|| unused_slots <= 0)
113
continue;
114
115
unused_slots--;
116
117
/* Only allocate one slot for this client. */
118
interval = NBR_OF_SLOTS;
119
} else
120
interval =
121
NBR_OF_SLOTS / requested_slots[region][client];
122
123
pos = 0;
124
while (pos < NBR_OF_SLOTS) {
125
if (val[pos] >= 0)
126
pos++;
127
else {
128
val[pos] = client;
129
pos += interval;
130
}
131
}
132
}
133
134
client = 0;
135
for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
136
/*
137
* Allocate remaining slots in round-robin
138
* client-number order for active clients. For this
139
* pass, we ignore requested bandwidth and previous
140
* allocations.
141
*/
142
if (val[slot] < 0) {
143
int first = client;
144
while (!active_clients[region][client]) {
145
client = (client + 1) % NBR_OF_CLIENTS;
146
if (client == first)
147
break;
148
}
149
val[slot] = client;
150
client = (client + 1) % NBR_OF_CLIENTS;
151
}
152
if (region == EXT_REGION)
153
REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot,
154
val[slot]);
155
else if (region == INT_REGION)
156
REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot,
157
val[slot]);
158
}
159
}
160
161
extern char _stext, _etext;
162
163
static void crisv32_arbiter_init(void)
164
{
165
static int initialized;
166
167
if (initialized)
168
return;
169
170
initialized = 1;
171
172
/*
173
* CPU caches are always set to active, but with zero
174
* bandwidth allocated. It should be ok to allocate zero
175
* bandwidth for the caches, because DMA for other channels
176
* will supposedly finish, once their programmed amount is
177
* done, and then the caches will get access according to the
178
* "fixed scheme" for unclaimed slots. Though, if for some
179
* use-case somewhere, there's a maximum CPU latency for
180
* e.g. some interrupt, we have to start allocating specific
181
* bandwidth for the CPU caches too.
182
*/
183
active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1;
184
crisv32_arbiter_config(EXT_REGION, 0);
185
crisv32_arbiter_config(INT_REGION, 0);
186
187
if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, IRQF_DISABLED,
188
"arbiter", NULL))
189
printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
190
191
#ifndef CONFIG_ETRAX_KGDB
192
/* Global watch for writes to kernel text segment. */
193
crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
194
arbiter_all_clients, arbiter_all_write, NULL);
195
#endif
196
}
197
198
/* Main entry for bandwidth allocation. */
199
200
int crisv32_arbiter_allocate_bandwidth(int client, int region,
201
unsigned long bandwidth)
202
{
203
int i;
204
int total_assigned = 0;
205
int total_clients = 0;
206
int req;
207
208
crisv32_arbiter_init();
209
210
for (i = 0; i < NBR_OF_CLIENTS; i++) {
211
total_assigned += requested_slots[region][i];
212
total_clients += active_clients[region][i];
213
}
214
215
/* Avoid division by 0 for 0-bandwidth requests. */
216
req = bandwidth == 0
217
? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
218
219
/*
220
* We make sure that there are enough slots only for non-zero
221
* requests. Requesting 0 bandwidth *may* allocate slots,
222
* though if all bandwidth is allocated, such a client won't
223
* get any and will have to rely on getting memory access
224
* according to the fixed scheme that's the default when one
225
* of the slot-allocated clients doesn't claim their slot.
226
*/
227
if (total_assigned + req > NBR_OF_SLOTS)
228
return -ENOMEM;
229
230
active_clients[region][client] = 1;
231
requested_slots[region][client] = req;
232
crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
233
234
return 0;
235
}
236
237
/*
238
* Main entry for bandwidth deallocation.
239
*
240
* Strictly speaking, for a somewhat constant set of clients where
241
* each client gets a constant bandwidth and is just enabled or
242
* disabled (somewhat dynamically), no action is necessary here to
243
* avoid starvation for non-zero-allocation clients, as the allocated
244
* slots will just be unused. However, handing out those unused slots
245
* to active clients avoids needless latency if the "fixed scheme"
246
* would give unclaimed slots to an eager low-index client.
247
*/
248
249
void crisv32_arbiter_deallocate_bandwidth(int client, int region)
250
{
251
int i;
252
int total_assigned = 0;
253
254
requested_slots[region][client] = 0;
255
active_clients[region][client] = 0;
256
257
for (i = 0; i < NBR_OF_CLIENTS; i++)
258
total_assigned += requested_slots[region][i];
259
260
crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
261
}
262
263
int crisv32_arbiter_watch(unsigned long start, unsigned long size,
264
unsigned long clients, unsigned long accesses,
265
watch_callback *cb)
266
{
267
int i;
268
269
crisv32_arbiter_init();
270
271
if (start > 0x80000000) {
272
printk(KERN_ERR "Arbiter: %lX doesn't look like a "
273
"physical address", start);
274
return -EFAULT;
275
}
276
277
spin_lock(&arbiter_lock);
278
279
for (i = 0; i < NUMBER_OF_BP; i++) {
280
if (!watches[i].used) {
281
reg_marb_rw_intr_mask intr_mask =
282
REG_RD(marb, regi_marb, rw_intr_mask);
283
284
watches[i].used = 1;
285
watches[i].start = start;
286
watches[i].end = start + size;
287
watches[i].cb = cb;
288
289
REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr,
290
watches[i].start);
291
REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr,
292
watches[i].end);
293
REG_WR_INT(marb_bp, watches[i].instance, rw_op,
294
accesses);
295
REG_WR_INT(marb_bp, watches[i].instance, rw_clients,
296
clients);
297
298
if (i == 0)
299
intr_mask.bp0 = regk_marb_yes;
300
else if (i == 1)
301
intr_mask.bp1 = regk_marb_yes;
302
else if (i == 2)
303
intr_mask.bp2 = regk_marb_yes;
304
else if (i == 3)
305
intr_mask.bp3 = regk_marb_yes;
306
307
REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
308
spin_unlock(&arbiter_lock);
309
310
return i;
311
}
312
}
313
spin_unlock(&arbiter_lock);
314
return -ENOMEM;
315
}
316
317
int crisv32_arbiter_unwatch(int id)
318
{
319
reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
320
321
crisv32_arbiter_init();
322
323
spin_lock(&arbiter_lock);
324
325
if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) {
326
spin_unlock(&arbiter_lock);
327
return -EINVAL;
328
}
329
330
memset(&watches[id], 0, sizeof(struct crisv32_watch_entry));
331
332
if (id == 0)
333
intr_mask.bp0 = regk_marb_no;
334
else if (id == 1)
335
intr_mask.bp1 = regk_marb_no;
336
else if (id == 2)
337
intr_mask.bp2 = regk_marb_no;
338
else if (id == 3)
339
intr_mask.bp3 = regk_marb_no;
340
341
REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
342
343
spin_unlock(&arbiter_lock);
344
return 0;
345
}
346
347
extern void show_registers(struct pt_regs *regs);
348
349
static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id)
350
{
351
reg_marb_r_masked_intr masked_intr =
352
REG_RD(marb, regi_marb, r_masked_intr);
353
reg_marb_bp_r_brk_clients r_clients;
354
reg_marb_bp_r_brk_addr r_addr;
355
reg_marb_bp_r_brk_op r_op;
356
reg_marb_bp_r_brk_first_client r_first;
357
reg_marb_bp_r_brk_size r_size;
358
reg_marb_bp_rw_ack ack = { 0 };
359
reg_marb_rw_ack_intr ack_intr = {
360
.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
361
};
362
struct crisv32_watch_entry *watch;
363
364
if (masked_intr.bp0) {
365
watch = &watches[0];
366
ack_intr.bp0 = regk_marb_yes;
367
} else if (masked_intr.bp1) {
368
watch = &watches[1];
369
ack_intr.bp1 = regk_marb_yes;
370
} else if (masked_intr.bp2) {
371
watch = &watches[2];
372
ack_intr.bp2 = regk_marb_yes;
373
} else if (masked_intr.bp3) {
374
watch = &watches[3];
375
ack_intr.bp3 = regk_marb_yes;
376
} else {
377
return IRQ_NONE;
378
}
379
380
/* Retrieve all useful information and print it. */
381
r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients);
382
r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr);
383
r_op = REG_RD(marb_bp, watch->instance, r_brk_op);
384
r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client);
385
r_size = REG_RD(marb_bp, watch->instance, r_brk_size);
386
387
printk(KERN_INFO "Arbiter IRQ\n");
388
printk(KERN_INFO "Clients %X addr %X op %X first %X size %X\n",
389
REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients),
390
REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr),
391
REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op),
392
REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first),
393
REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size));
394
395
REG_WR(marb_bp, watch->instance, rw_ack, ack);
396
REG_WR(marb, regi_marb, rw_ack_intr, ack_intr);
397
398
printk(KERN_INFO "IRQ occurred at %lX\n", get_irq_regs()->erp);
399
400
if (watch->cb)
401
watch->cb();
402
403
return IRQ_HANDLED;
404
}
405
406