Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/cris/mm/fault.c
10817 views
1
/*
2
* arch/cris/mm/fault.c
3
*
4
* Copyright (C) 2000-2010 Axis Communications AB
5
*/
6
7
#include <linux/mm.h>
8
#include <linux/interrupt.h>
9
#include <linux/module.h>
10
#include <linux/wait.h>
11
#include <asm/uaccess.h>
12
13
extern int find_fixup_code(struct pt_regs *);
14
extern void die_if_kernel(const char *, struct pt_regs *, long);
15
extern void show_registers(struct pt_regs *regs);
16
17
/* debug of low-level TLB reload */
18
#undef DEBUG
19
20
#ifdef DEBUG
21
#define D(x) x
22
#else
23
#define D(x)
24
#endif
25
26
/* debug of higher-level faults */
27
#define DPG(x)
28
29
/* current active page directory */
30
31
DEFINE_PER_CPU(pgd_t *, current_pgd);
32
unsigned long cris_signal_return_page;
33
34
/*
35
* This routine handles page faults. It determines the address,
36
* and the problem, and then passes it off to one of the appropriate
37
* routines.
38
*
39
* Notice that the address we're given is aligned to the page the fault
40
* occurred in, since we only get the PFN in R_MMU_CAUSE not the complete
41
* address.
42
*
43
* error_code:
44
* bit 0 == 0 means no page found, 1 means protection fault
45
* bit 1 == 0 means read, 1 means write
46
*
47
* If this routine detects a bad access, it returns 1, otherwise it
48
* returns 0.
49
*/
50
51
asmlinkage void
52
do_page_fault(unsigned long address, struct pt_regs *regs,
53
int protection, int writeaccess)
54
{
55
struct task_struct *tsk;
56
struct mm_struct *mm;
57
struct vm_area_struct * vma;
58
siginfo_t info;
59
int fault;
60
61
D(printk(KERN_DEBUG
62
"Page fault for %lX on %X at %lX, prot %d write %d\n",
63
address, smp_processor_id(), instruction_pointer(regs),
64
protection, writeaccess));
65
66
tsk = current;
67
68
/*
69
* We fault-in kernel-space virtual memory on-demand. The
70
* 'reference' page table is init_mm.pgd.
71
*
72
* NOTE! We MUST NOT take any locks for this case. We may
73
* be in an interrupt or a critical region, and should
74
* only copy the information from the master page table,
75
* nothing more.
76
*
77
* NOTE2: This is done so that, when updating the vmalloc
78
* mappings we don't have to walk all processes pgdirs and
79
* add the high mappings all at once. Instead we do it as they
80
* are used. However vmalloc'ed page entries have the PAGE_GLOBAL
81
* bit set so sometimes the TLB can use a lingering entry.
82
*
83
* This verifies that the fault happens in kernel space
84
* and that the fault was not a protection error (error_code & 1).
85
*/
86
87
if (address >= VMALLOC_START &&
88
!protection &&
89
!user_mode(regs))
90
goto vmalloc_fault;
91
92
/* When stack execution is not allowed we store the signal
93
* trampolines in the reserved cris_signal_return_page.
94
* Handle this in the exact same way as vmalloc (we know
95
* that the mapping is there and is valid so no need to
96
* call handle_mm_fault).
97
*/
98
if (cris_signal_return_page &&
99
address == cris_signal_return_page &&
100
!protection && user_mode(regs))
101
goto vmalloc_fault;
102
103
/* we can and should enable interrupts at this point */
104
local_irq_enable();
105
106
mm = tsk->mm;
107
info.si_code = SEGV_MAPERR;
108
109
/*
110
* If we're in an interrupt or "atomic" operation or have no
111
* user context, we must not take the fault.
112
*/
113
114
if (in_atomic() || !mm)
115
goto no_context;
116
117
down_read(&mm->mmap_sem);
118
vma = find_vma(mm, address);
119
if (!vma)
120
goto bad_area;
121
if (vma->vm_start <= address)
122
goto good_area;
123
if (!(vma->vm_flags & VM_GROWSDOWN))
124
goto bad_area;
125
if (user_mode(regs)) {
126
/*
127
* accessing the stack below usp is always a bug.
128
* we get page-aligned addresses so we can only check
129
* if we're within a page from usp, but that might be
130
* enough to catch brutal errors at least.
131
*/
132
if (address + PAGE_SIZE < rdusp())
133
goto bad_area;
134
}
135
if (expand_stack(vma, address))
136
goto bad_area;
137
138
/*
139
* Ok, we have a good vm_area for this memory access, so
140
* we can handle it..
141
*/
142
143
good_area:
144
info.si_code = SEGV_ACCERR;
145
146
/* first do some preliminary protection checks */
147
148
if (writeaccess == 2){
149
if (!(vma->vm_flags & VM_EXEC))
150
goto bad_area;
151
} else if (writeaccess == 1) {
152
if (!(vma->vm_flags & VM_WRITE))
153
goto bad_area;
154
} else {
155
if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
156
goto bad_area;
157
}
158
159
/*
160
* If for any reason at all we couldn't handle the fault,
161
* make sure we exit gracefully rather than endlessly redo
162
* the fault.
163
*/
164
165
fault = handle_mm_fault(mm, vma, address, (writeaccess & 1) ? FAULT_FLAG_WRITE : 0);
166
if (unlikely(fault & VM_FAULT_ERROR)) {
167
if (fault & VM_FAULT_OOM)
168
goto out_of_memory;
169
else if (fault & VM_FAULT_SIGBUS)
170
goto do_sigbus;
171
BUG();
172
}
173
if (fault & VM_FAULT_MAJOR)
174
tsk->maj_flt++;
175
else
176
tsk->min_flt++;
177
178
up_read(&mm->mmap_sem);
179
return;
180
181
/*
182
* Something tried to access memory that isn't in our memory map..
183
* Fix it, but check if it's kernel or user first..
184
*/
185
186
bad_area:
187
up_read(&mm->mmap_sem);
188
189
bad_area_nosemaphore:
190
DPG(show_registers(regs));
191
192
/* User mode accesses just cause a SIGSEGV */
193
194
if (user_mode(regs)) {
195
printk(KERN_NOTICE "%s (pid %d) segfaults for page "
196
"address %08lx at pc %08lx\n",
197
tsk->comm, tsk->pid,
198
address, instruction_pointer(regs));
199
200
/* With DPG on, we've already dumped registers above. */
201
DPG(if (0))
202
show_registers(regs);
203
204
#ifdef CONFIG_NO_SEGFAULT_TERMINATION
205
DECLARE_WAIT_QUEUE_HEAD(wq);
206
wait_event_interruptible(wq, 0 == 1);
207
#else
208
info.si_signo = SIGSEGV;
209
info.si_errno = 0;
210
/* info.si_code has been set above */
211
info.si_addr = (void *)address;
212
force_sig_info(SIGSEGV, &info, tsk);
213
#endif
214
return;
215
}
216
217
no_context:
218
219
/* Are we prepared to handle this kernel fault?
220
*
221
* (The kernel has valid exception-points in the source
222
* when it accesses user-memory. When it fails in one
223
* of those points, we find it in a table and do a jump
224
* to some fixup code that loads an appropriate error
225
* code)
226
*/
227
228
if (find_fixup_code(regs))
229
return;
230
231
/*
232
* Oops. The kernel tried to access some bad page. We'll have to
233
* terminate things with extreme prejudice.
234
*/
235
236
if (!oops_in_progress) {
237
oops_in_progress = 1;
238
if ((unsigned long) (address) < PAGE_SIZE)
239
printk(KERN_ALERT "Unable to handle kernel NULL "
240
"pointer dereference");
241
else
242
printk(KERN_ALERT "Unable to handle kernel access"
243
" at virtual address %08lx\n", address);
244
245
die_if_kernel("Oops", regs, (writeaccess << 1) | protection);
246
oops_in_progress = 0;
247
}
248
249
do_exit(SIGKILL);
250
251
/*
252
* We ran out of memory, or some other thing happened to us that made
253
* us unable to handle the page fault gracefully.
254
*/
255
256
out_of_memory:
257
up_read(&mm->mmap_sem);
258
if (!user_mode(regs))
259
goto no_context;
260
pagefault_out_of_memory();
261
return;
262
263
do_sigbus:
264
up_read(&mm->mmap_sem);
265
266
/*
267
* Send a sigbus, regardless of whether we were in kernel
268
* or user mode.
269
*/
270
info.si_signo = SIGBUS;
271
info.si_errno = 0;
272
info.si_code = BUS_ADRERR;
273
info.si_addr = (void *)address;
274
force_sig_info(SIGBUS, &info, tsk);
275
276
/* Kernel mode? Handle exceptions or die */
277
if (!user_mode(regs))
278
goto no_context;
279
return;
280
281
vmalloc_fault:
282
{
283
/*
284
* Synchronize this task's top level page-table
285
* with the 'reference' page table.
286
*
287
* Use current_pgd instead of tsk->active_mm->pgd
288
* since the latter might be unavailable if this
289
* code is executed in a misfortunately run irq
290
* (like inside schedule() between switch_mm and
291
* switch_to...).
292
*/
293
294
int offset = pgd_index(address);
295
pgd_t *pgd, *pgd_k;
296
pud_t *pud, *pud_k;
297
pmd_t *pmd, *pmd_k;
298
pte_t *pte_k;
299
300
pgd = (pgd_t *)per_cpu(current_pgd, smp_processor_id()) + offset;
301
pgd_k = init_mm.pgd + offset;
302
303
/* Since we're two-level, we don't need to do both
304
* set_pgd and set_pmd (they do the same thing). If
305
* we go three-level at some point, do the right thing
306
* with pgd_present and set_pgd here.
307
*
308
* Also, since the vmalloc area is global, we don't
309
* need to copy individual PTE's, it is enough to
310
* copy the pgd pointer into the pte page of the
311
* root task. If that is there, we'll find our pte if
312
* it exists.
313
*/
314
315
pud = pud_offset(pgd, address);
316
pud_k = pud_offset(pgd_k, address);
317
if (!pud_present(*pud_k))
318
goto no_context;
319
320
pmd = pmd_offset(pud, address);
321
pmd_k = pmd_offset(pud_k, address);
322
323
if (!pmd_present(*pmd_k))
324
goto bad_area_nosemaphore;
325
326
set_pmd(pmd, *pmd_k);
327
328
/* Make sure the actual PTE exists as well to
329
* catch kernel vmalloc-area accesses to non-mapped
330
* addresses. If we don't do this, this will just
331
* silently loop forever.
332
*/
333
334
pte_k = pte_offset_kernel(pmd_k, address);
335
if (!pte_present(*pte_k))
336
goto no_context;
337
338
return;
339
}
340
}
341
342
/* Find fixup code. */
343
int
344
find_fixup_code(struct pt_regs *regs)
345
{
346
const struct exception_table_entry *fixup;
347
/* in case of delay slot fault (v32) */
348
unsigned long ip = (instruction_pointer(regs) & ~0x1);
349
350
fixup = search_exception_tables(ip);
351
if (fixup != 0) {
352
/* Adjust the instruction pointer in the stackframe. */
353
instruction_pointer(regs) = fixup->fixup;
354
arch_fixup(regs);
355
return 1;
356
}
357
358
return 0;
359
}
360
361