Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/hp/common/sba_iommu.c
15126 views
1
/*
2
** IA64 System Bus Adapter (SBA) I/O MMU manager
3
**
4
** (c) Copyright 2002-2005 Alex Williamson
5
** (c) Copyright 2002-2003 Grant Grundler
6
** (c) Copyright 2002-2005 Hewlett-Packard Company
7
**
8
** Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
9
** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
10
**
11
** This program is free software; you can redistribute it and/or modify
12
** it under the terms of the GNU General Public License as published by
13
** the Free Software Foundation; either version 2 of the License, or
14
** (at your option) any later version.
15
**
16
**
17
** This module initializes the IOC (I/O Controller) found on HP
18
** McKinley machines and their successors.
19
**
20
*/
21
22
#include <linux/types.h>
23
#include <linux/kernel.h>
24
#include <linux/module.h>
25
#include <linux/spinlock.h>
26
#include <linux/slab.h>
27
#include <linux/init.h>
28
#include <linux/mm.h>
29
#include <linux/string.h>
30
#include <linux/pci.h>
31
#include <linux/proc_fs.h>
32
#include <linux/seq_file.h>
33
#include <linux/acpi.h>
34
#include <linux/efi.h>
35
#include <linux/nodemask.h>
36
#include <linux/bitops.h> /* hweight64() */
37
#include <linux/crash_dump.h>
38
#include <linux/iommu-helper.h>
39
#include <linux/dma-mapping.h>
40
#include <linux/prefetch.h>
41
42
#include <asm/delay.h> /* ia64_get_itc() */
43
#include <asm/io.h>
44
#include <asm/page.h> /* PAGE_OFFSET */
45
#include <asm/dma.h>
46
#include <asm/system.h> /* wmb() */
47
48
#include <asm/acpi-ext.h>
49
50
extern int swiotlb_late_init_with_default_size (size_t size);
51
52
#define PFX "IOC: "
53
54
/*
55
** Enabling timing search of the pdir resource map. Output in /proc.
56
** Disabled by default to optimize performance.
57
*/
58
#undef PDIR_SEARCH_TIMING
59
60
/*
61
** This option allows cards capable of 64bit DMA to bypass the IOMMU. If
62
** not defined, all DMA will be 32bit and go through the TLB.
63
** There's potentially a conflict in the bio merge code with us
64
** advertising an iommu, but then bypassing it. Since I/O MMU bypassing
65
** appears to give more performance than bio-level virtual merging, we'll
66
** do the former for now. NOTE: BYPASS_SG also needs to be undef'd to
67
** completely restrict DMA to the IOMMU.
68
*/
69
#define ALLOW_IOV_BYPASS
70
71
/*
72
** This option specifically allows/disallows bypassing scatterlists with
73
** multiple entries. Coalescing these entries can allow better DMA streaming
74
** and in some cases shows better performance than entirely bypassing the
75
** IOMMU. Performance increase on the order of 1-2% sequential output/input
76
** using bonnie++ on a RAID0 MD device (sym2 & mpt).
77
*/
78
#undef ALLOW_IOV_BYPASS_SG
79
80
/*
81
** If a device prefetches beyond the end of a valid pdir entry, it will cause
82
** a hard failure, ie. MCA. Version 3.0 and later of the zx1 LBA should
83
** disconnect on 4k boundaries and prevent such issues. If the device is
84
** particularly aggressive, this option will keep the entire pdir valid such
85
** that prefetching will hit a valid address. This could severely impact
86
** error containment, and is therefore off by default. The page that is
87
** used for spill-over is poisoned, so that should help debugging somewhat.
88
*/
89
#undef FULL_VALID_PDIR
90
91
#define ENABLE_MARK_CLEAN
92
93
/*
94
** The number of debug flags is a clue - this code is fragile. NOTE: since
95
** tightening the use of res_lock the resource bitmap and actual pdir are no
96
** longer guaranteed to stay in sync. The sanity checking code isn't going to
97
** like that.
98
*/
99
#undef DEBUG_SBA_INIT
100
#undef DEBUG_SBA_RUN
101
#undef DEBUG_SBA_RUN_SG
102
#undef DEBUG_SBA_RESOURCE
103
#undef ASSERT_PDIR_SANITY
104
#undef DEBUG_LARGE_SG_ENTRIES
105
#undef DEBUG_BYPASS
106
107
#if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
108
#error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
109
#endif
110
111
#define SBA_INLINE __inline__
112
/* #define SBA_INLINE */
113
114
#ifdef DEBUG_SBA_INIT
115
#define DBG_INIT(x...) printk(x)
116
#else
117
#define DBG_INIT(x...)
118
#endif
119
120
#ifdef DEBUG_SBA_RUN
121
#define DBG_RUN(x...) printk(x)
122
#else
123
#define DBG_RUN(x...)
124
#endif
125
126
#ifdef DEBUG_SBA_RUN_SG
127
#define DBG_RUN_SG(x...) printk(x)
128
#else
129
#define DBG_RUN_SG(x...)
130
#endif
131
132
133
#ifdef DEBUG_SBA_RESOURCE
134
#define DBG_RES(x...) printk(x)
135
#else
136
#define DBG_RES(x...)
137
#endif
138
139
#ifdef DEBUG_BYPASS
140
#define DBG_BYPASS(x...) printk(x)
141
#else
142
#define DBG_BYPASS(x...)
143
#endif
144
145
#ifdef ASSERT_PDIR_SANITY
146
#define ASSERT(expr) \
147
if(!(expr)) { \
148
printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
149
panic(#expr); \
150
}
151
#else
152
#define ASSERT(expr)
153
#endif
154
155
/*
156
** The number of pdir entries to "free" before issuing
157
** a read to PCOM register to flush out PCOM writes.
158
** Interacts with allocation granularity (ie 4 or 8 entries
159
** allocated and free'd/purged at a time might make this
160
** less interesting).
161
*/
162
#define DELAYED_RESOURCE_CNT 64
163
164
#define PCI_DEVICE_ID_HP_SX2000_IOC 0x12ec
165
166
#define ZX1_IOC_ID ((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
167
#define ZX2_IOC_ID ((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
168
#define REO_IOC_ID ((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
169
#define SX1000_IOC_ID ((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
170
#define SX2000_IOC_ID ((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
171
172
#define ZX1_IOC_OFFSET 0x1000 /* ACPI reports SBA, we want IOC */
173
174
#define IOC_FUNC_ID 0x000
175
#define IOC_FCLASS 0x008 /* function class, bist, header, rev... */
176
#define IOC_IBASE 0x300 /* IO TLB */
177
#define IOC_IMASK 0x308
178
#define IOC_PCOM 0x310
179
#define IOC_TCNFG 0x318
180
#define IOC_PDIR_BASE 0x320
181
182
#define IOC_ROPE0_CFG 0x500
183
#define IOC_ROPE_AO 0x10 /* Allow "Relaxed Ordering" */
184
185
186
/* AGP GART driver looks for this */
187
#define ZX1_SBA_IOMMU_COOKIE 0x0000badbadc0ffeeUL
188
189
/*
190
** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
191
**
192
** Some IOCs (sx1000) can run at the above pages sizes, but are
193
** really only supported using the IOC at a 4k page size.
194
**
195
** iovp_size could only be greater than PAGE_SIZE if we are
196
** confident the drivers really only touch the next physical
197
** page iff that driver instance owns it.
198
*/
199
static unsigned long iovp_size;
200
static unsigned long iovp_shift;
201
static unsigned long iovp_mask;
202
203
struct ioc {
204
void __iomem *ioc_hpa; /* I/O MMU base address */
205
char *res_map; /* resource map, bit == pdir entry */
206
u64 *pdir_base; /* physical base address */
207
unsigned long ibase; /* pdir IOV Space base */
208
unsigned long imask; /* pdir IOV Space mask */
209
210
unsigned long *res_hint; /* next avail IOVP - circular search */
211
unsigned long dma_mask;
212
spinlock_t res_lock; /* protects the resource bitmap, but must be held when */
213
/* clearing pdir to prevent races with allocations. */
214
unsigned int res_bitshift; /* from the RIGHT! */
215
unsigned int res_size; /* size of resource map in bytes */
216
#ifdef CONFIG_NUMA
217
unsigned int node; /* node where this IOC lives */
218
#endif
219
#if DELAYED_RESOURCE_CNT > 0
220
spinlock_t saved_lock; /* may want to try to get this on a separate cacheline */
221
/* than res_lock for bigger systems. */
222
int saved_cnt;
223
struct sba_dma_pair {
224
dma_addr_t iova;
225
size_t size;
226
} saved[DELAYED_RESOURCE_CNT];
227
#endif
228
229
#ifdef PDIR_SEARCH_TIMING
230
#define SBA_SEARCH_SAMPLE 0x100
231
unsigned long avg_search[SBA_SEARCH_SAMPLE];
232
unsigned long avg_idx; /* current index into avg_search */
233
#endif
234
235
/* Stuff we don't need in performance path */
236
struct ioc *next; /* list of IOC's in system */
237
acpi_handle handle; /* for multiple IOC's */
238
const char *name;
239
unsigned int func_id;
240
unsigned int rev; /* HW revision of chip */
241
u32 iov_size;
242
unsigned int pdir_size; /* in bytes, determined by IOV Space size */
243
struct pci_dev *sac_only_dev;
244
};
245
246
static struct ioc *ioc_list;
247
static int reserve_sba_gart = 1;
248
249
static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
250
static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
251
252
#define sba_sg_address(sg) sg_virt((sg))
253
254
#ifdef FULL_VALID_PDIR
255
static u64 prefetch_spill_page;
256
#endif
257
258
#ifdef CONFIG_PCI
259
# define GET_IOC(dev) (((dev)->bus == &pci_bus_type) \
260
? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
261
#else
262
# define GET_IOC(dev) NULL
263
#endif
264
265
/*
266
** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
267
** (or rather not merge) DMAs into manageable chunks.
268
** On parisc, this is more of the software/tuning constraint
269
** rather than the HW. I/O MMU allocation algorithms can be
270
** faster with smaller sizes (to some degree).
271
*/
272
#define DMA_CHUNK_SIZE (BITS_PER_LONG*iovp_size)
273
274
#define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
275
276
/************************************
277
** SBA register read and write support
278
**
279
** BE WARNED: register writes are posted.
280
** (ie follow writes which must reach HW with a read)
281
**
282
*/
283
#define READ_REG(addr) __raw_readq(addr)
284
#define WRITE_REG(val, addr) __raw_writeq(val, addr)
285
286
#ifdef DEBUG_SBA_INIT
287
288
/**
289
* sba_dump_tlb - debugging only - print IOMMU operating parameters
290
* @hpa: base address of the IOMMU
291
*
292
* Print the size/location of the IO MMU PDIR.
293
*/
294
static void
295
sba_dump_tlb(char *hpa)
296
{
297
DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
298
DBG_INIT("IOC_IBASE : %016lx\n", READ_REG(hpa+IOC_IBASE));
299
DBG_INIT("IOC_IMASK : %016lx\n", READ_REG(hpa+IOC_IMASK));
300
DBG_INIT("IOC_TCNFG : %016lx\n", READ_REG(hpa+IOC_TCNFG));
301
DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
302
DBG_INIT("\n");
303
}
304
#endif
305
306
307
#ifdef ASSERT_PDIR_SANITY
308
309
/**
310
* sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
311
* @ioc: IO MMU structure which owns the pdir we are interested in.
312
* @msg: text to print ont the output line.
313
* @pide: pdir index.
314
*
315
* Print one entry of the IO MMU PDIR in human readable form.
316
*/
317
static void
318
sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
319
{
320
/* start printing from lowest pde in rval */
321
u64 *ptr = &ioc->pdir_base[pide & ~(BITS_PER_LONG - 1)];
322
unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
323
uint rcnt;
324
325
printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
326
msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
327
328
rcnt = 0;
329
while (rcnt < BITS_PER_LONG) {
330
printk(KERN_DEBUG "%s %2d %p %016Lx\n",
331
(rcnt == (pide & (BITS_PER_LONG - 1)))
332
? " -->" : " ",
333
rcnt, ptr, (unsigned long long) *ptr );
334
rcnt++;
335
ptr++;
336
}
337
printk(KERN_DEBUG "%s", msg);
338
}
339
340
341
/**
342
* sba_check_pdir - debugging only - consistency checker
343
* @ioc: IO MMU structure which owns the pdir we are interested in.
344
* @msg: text to print ont the output line.
345
*
346
* Verify the resource map and pdir state is consistent
347
*/
348
static int
349
sba_check_pdir(struct ioc *ioc, char *msg)
350
{
351
u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
352
u64 *rptr = (u64 *) ioc->res_map; /* resource map ptr */
353
u64 *pptr = ioc->pdir_base; /* pdir ptr */
354
uint pide = 0;
355
356
while (rptr < rptr_end) {
357
u64 rval;
358
int rcnt; /* number of bits we might check */
359
360
rval = *rptr;
361
rcnt = 64;
362
363
while (rcnt) {
364
/* Get last byte and highest bit from that */
365
u32 pde = ((u32)((*pptr >> (63)) & 0x1));
366
if ((rval & 0x1) ^ pde)
367
{
368
/*
369
** BUMMER! -- res_map != pdir --
370
** Dump rval and matching pdir entries
371
*/
372
sba_dump_pdir_entry(ioc, msg, pide);
373
return(1);
374
}
375
rcnt--;
376
rval >>= 1; /* try the next bit */
377
pptr++;
378
pide++;
379
}
380
rptr++; /* look at next word of res_map */
381
}
382
/* It'd be nice if we always got here :^) */
383
return 0;
384
}
385
386
387
/**
388
* sba_dump_sg - debugging only - print Scatter-Gather list
389
* @ioc: IO MMU structure which owns the pdir we are interested in.
390
* @startsg: head of the SG list
391
* @nents: number of entries in SG list
392
*
393
* print the SG list so we can verify it's correct by hand.
394
*/
395
static void
396
sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
397
{
398
while (nents-- > 0) {
399
printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
400
startsg->dma_address, startsg->dma_length,
401
sba_sg_address(startsg));
402
startsg = sg_next(startsg);
403
}
404
}
405
406
static void
407
sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
408
{
409
struct scatterlist *the_sg = startsg;
410
int the_nents = nents;
411
412
while (the_nents-- > 0) {
413
if (sba_sg_address(the_sg) == 0x0UL)
414
sba_dump_sg(NULL, startsg, nents);
415
the_sg = sg_next(the_sg);
416
}
417
}
418
419
#endif /* ASSERT_PDIR_SANITY */
420
421
422
423
424
/**************************************************************
425
*
426
* I/O Pdir Resource Management
427
*
428
* Bits set in the resource map are in use.
429
* Each bit can represent a number of pages.
430
* LSbs represent lower addresses (IOVA's).
431
*
432
***************************************************************/
433
#define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */
434
435
/* Convert from IOVP to IOVA and vice versa. */
436
#define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
437
#define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
438
439
#define PDIR_ENTRY_SIZE sizeof(u64)
440
441
#define PDIR_INDEX(iovp) ((iovp)>>iovp_shift)
442
443
#define RESMAP_MASK(n) ~(~0UL << (n))
444
#define RESMAP_IDX_MASK (sizeof(unsigned long) - 1)
445
446
447
/**
448
* For most cases the normal get_order is sufficient, however it limits us
449
* to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
450
* It only incurs about 1 clock cycle to use this one with the static variable
451
* and makes the code more intuitive.
452
*/
453
static SBA_INLINE int
454
get_iovp_order (unsigned long size)
455
{
456
long double d = size - 1;
457
long order;
458
459
order = ia64_getf_exp(d);
460
order = order - iovp_shift - 0xffff + 1;
461
if (order < 0)
462
order = 0;
463
return order;
464
}
465
466
static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
467
unsigned int bitshiftcnt)
468
{
469
return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
470
+ bitshiftcnt;
471
}
472
473
/**
474
* sba_search_bitmap - find free space in IO PDIR resource bitmap
475
* @ioc: IO MMU structure which owns the pdir we are interested in.
476
* @bits_wanted: number of entries we need.
477
* @use_hint: use res_hint to indicate where to start looking
478
*
479
* Find consecutive free bits in resource bitmap.
480
* Each bit represents one entry in the IO Pdir.
481
* Cool perf optimization: search for log2(size) bits at a time.
482
*/
483
static SBA_INLINE unsigned long
484
sba_search_bitmap(struct ioc *ioc, struct device *dev,
485
unsigned long bits_wanted, int use_hint)
486
{
487
unsigned long *res_ptr;
488
unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
489
unsigned long flags, pide = ~0UL, tpide;
490
unsigned long boundary_size;
491
unsigned long shift;
492
int ret;
493
494
ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
495
ASSERT(res_ptr < res_end);
496
497
boundary_size = (unsigned long long)dma_get_seg_boundary(dev) + 1;
498
boundary_size = ALIGN(boundary_size, 1ULL << iovp_shift) >> iovp_shift;
499
500
BUG_ON(ioc->ibase & ~iovp_mask);
501
shift = ioc->ibase >> iovp_shift;
502
503
spin_lock_irqsave(&ioc->res_lock, flags);
504
505
/* Allow caller to force a search through the entire resource space */
506
if (likely(use_hint)) {
507
res_ptr = ioc->res_hint;
508
} else {
509
res_ptr = (ulong *)ioc->res_map;
510
ioc->res_bitshift = 0;
511
}
512
513
/*
514
* N.B. REO/Grande defect AR2305 can cause TLB fetch timeouts
515
* if a TLB entry is purged while in use. sba_mark_invalid()
516
* purges IOTLB entries in power-of-two sizes, so we also
517
* allocate IOVA space in power-of-two sizes.
518
*/
519
bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
520
521
if (likely(bits_wanted == 1)) {
522
unsigned int bitshiftcnt;
523
for(; res_ptr < res_end ; res_ptr++) {
524
if (likely(*res_ptr != ~0UL)) {
525
bitshiftcnt = ffz(*res_ptr);
526
*res_ptr |= (1UL << bitshiftcnt);
527
pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
528
ioc->res_bitshift = bitshiftcnt + bits_wanted;
529
goto found_it;
530
}
531
}
532
goto not_found;
533
534
}
535
536
if (likely(bits_wanted <= BITS_PER_LONG/2)) {
537
/*
538
** Search the resource bit map on well-aligned values.
539
** "o" is the alignment.
540
** We need the alignment to invalidate I/O TLB using
541
** SBA HW features in the unmap path.
542
*/
543
unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
544
uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
545
unsigned long mask, base_mask;
546
547
base_mask = RESMAP_MASK(bits_wanted);
548
mask = base_mask << bitshiftcnt;
549
550
DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
551
for(; res_ptr < res_end ; res_ptr++)
552
{
553
DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr);
554
ASSERT(0 != mask);
555
for (; mask ; mask <<= o, bitshiftcnt += o) {
556
tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
557
ret = iommu_is_span_boundary(tpide, bits_wanted,
558
shift,
559
boundary_size);
560
if ((0 == ((*res_ptr) & mask)) && !ret) {
561
*res_ptr |= mask; /* mark resources busy! */
562
pide = tpide;
563
ioc->res_bitshift = bitshiftcnt + bits_wanted;
564
goto found_it;
565
}
566
}
567
568
bitshiftcnt = 0;
569
mask = base_mask;
570
571
}
572
573
} else {
574
int qwords, bits, i;
575
unsigned long *end;
576
577
qwords = bits_wanted >> 6; /* /64 */
578
bits = bits_wanted - (qwords * BITS_PER_LONG);
579
580
end = res_end - qwords;
581
582
for (; res_ptr < end; res_ptr++) {
583
tpide = ptr_to_pide(ioc, res_ptr, 0);
584
ret = iommu_is_span_boundary(tpide, bits_wanted,
585
shift, boundary_size);
586
if (ret)
587
goto next_ptr;
588
for (i = 0 ; i < qwords ; i++) {
589
if (res_ptr[i] != 0)
590
goto next_ptr;
591
}
592
if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
593
continue;
594
595
/* Found it, mark it */
596
for (i = 0 ; i < qwords ; i++)
597
res_ptr[i] = ~0UL;
598
res_ptr[i] |= RESMAP_MASK(bits);
599
600
pide = tpide;
601
res_ptr += qwords;
602
ioc->res_bitshift = bits;
603
goto found_it;
604
next_ptr:
605
;
606
}
607
}
608
609
not_found:
610
prefetch(ioc->res_map);
611
ioc->res_hint = (unsigned long *) ioc->res_map;
612
ioc->res_bitshift = 0;
613
spin_unlock_irqrestore(&ioc->res_lock, flags);
614
return (pide);
615
616
found_it:
617
ioc->res_hint = res_ptr;
618
spin_unlock_irqrestore(&ioc->res_lock, flags);
619
return (pide);
620
}
621
622
623
/**
624
* sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
625
* @ioc: IO MMU structure which owns the pdir we are interested in.
626
* @size: number of bytes to create a mapping for
627
*
628
* Given a size, find consecutive unmarked and then mark those bits in the
629
* resource bit map.
630
*/
631
static int
632
sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
633
{
634
unsigned int pages_needed = size >> iovp_shift;
635
#ifdef PDIR_SEARCH_TIMING
636
unsigned long itc_start;
637
#endif
638
unsigned long pide;
639
640
ASSERT(pages_needed);
641
ASSERT(0 == (size & ~iovp_mask));
642
643
#ifdef PDIR_SEARCH_TIMING
644
itc_start = ia64_get_itc();
645
#endif
646
/*
647
** "seek and ye shall find"...praying never hurts either...
648
*/
649
pide = sba_search_bitmap(ioc, dev, pages_needed, 1);
650
if (unlikely(pide >= (ioc->res_size << 3))) {
651
pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
652
if (unlikely(pide >= (ioc->res_size << 3))) {
653
#if DELAYED_RESOURCE_CNT > 0
654
unsigned long flags;
655
656
/*
657
** With delayed resource freeing, we can give this one more shot. We're
658
** getting close to being in trouble here, so do what we can to make this
659
** one count.
660
*/
661
spin_lock_irqsave(&ioc->saved_lock, flags);
662
if (ioc->saved_cnt > 0) {
663
struct sba_dma_pair *d;
664
int cnt = ioc->saved_cnt;
665
666
d = &(ioc->saved[ioc->saved_cnt - 1]);
667
668
spin_lock(&ioc->res_lock);
669
while (cnt--) {
670
sba_mark_invalid(ioc, d->iova, d->size);
671
sba_free_range(ioc, d->iova, d->size);
672
d--;
673
}
674
ioc->saved_cnt = 0;
675
READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
676
spin_unlock(&ioc->res_lock);
677
}
678
spin_unlock_irqrestore(&ioc->saved_lock, flags);
679
680
pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
681
if (unlikely(pide >= (ioc->res_size << 3))) {
682
printk(KERN_WARNING "%s: I/O MMU @ %p is"
683
"out of mapping resources, %u %u %lx\n",
684
__func__, ioc->ioc_hpa, ioc->res_size,
685
pages_needed, dma_get_seg_boundary(dev));
686
return -1;
687
}
688
#else
689
printk(KERN_WARNING "%s: I/O MMU @ %p is"
690
"out of mapping resources, %u %u %lx\n",
691
__func__, ioc->ioc_hpa, ioc->res_size,
692
pages_needed, dma_get_seg_boundary(dev));
693
return -1;
694
#endif
695
}
696
}
697
698
#ifdef PDIR_SEARCH_TIMING
699
ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
700
ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
701
#endif
702
703
prefetchw(&(ioc->pdir_base[pide]));
704
705
#ifdef ASSERT_PDIR_SANITY
706
/* verify the first enable bit is clear */
707
if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
708
sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
709
}
710
#endif
711
712
DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
713
__func__, size, pages_needed, pide,
714
(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
715
ioc->res_bitshift );
716
717
return (pide);
718
}
719
720
721
/**
722
* sba_free_range - unmark bits in IO PDIR resource bitmap
723
* @ioc: IO MMU structure which owns the pdir we are interested in.
724
* @iova: IO virtual address which was previously allocated.
725
* @size: number of bytes to create a mapping for
726
*
727
* clear bits in the ioc's resource map
728
*/
729
static SBA_INLINE void
730
sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
731
{
732
unsigned long iovp = SBA_IOVP(ioc, iova);
733
unsigned int pide = PDIR_INDEX(iovp);
734
unsigned int ridx = pide >> 3; /* convert bit to byte address */
735
unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
736
int bits_not_wanted = size >> iovp_shift;
737
unsigned long m;
738
739
/* Round up to power-of-two size: see AR2305 note above */
740
bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
741
for (; bits_not_wanted > 0 ; res_ptr++) {
742
743
if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
744
745
/* these mappings start 64bit aligned */
746
*res_ptr = 0UL;
747
bits_not_wanted -= BITS_PER_LONG;
748
pide += BITS_PER_LONG;
749
750
} else {
751
752
/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
753
m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
754
bits_not_wanted = 0;
755
756
DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
757
bits_not_wanted, m, pide, res_ptr, *res_ptr);
758
759
ASSERT(m != 0);
760
ASSERT(bits_not_wanted);
761
ASSERT((*res_ptr & m) == m); /* verify same bits are set */
762
*res_ptr &= ~m;
763
}
764
}
765
}
766
767
768
/**************************************************************
769
*
770
* "Dynamic DMA Mapping" support (aka "Coherent I/O")
771
*
772
***************************************************************/
773
774
/**
775
* sba_io_pdir_entry - fill in one IO PDIR entry
776
* @pdir_ptr: pointer to IO PDIR entry
777
* @vba: Virtual CPU address of buffer to map
778
*
779
* SBA Mapping Routine
780
*
781
* Given a virtual address (vba, arg1) sba_io_pdir_entry()
782
* loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
783
* Each IO Pdir entry consists of 8 bytes as shown below
784
* (LSB == bit 0):
785
*
786
* 63 40 11 7 0
787
* +-+---------------------+----------------------------------+----+--------+
788
* |V| U | PPN[39:12] | U | FF |
789
* +-+---------------------+----------------------------------+----+--------+
790
*
791
* V == Valid Bit
792
* U == Unused
793
* PPN == Physical Page Number
794
*
795
* The physical address fields are filled with the results of virt_to_phys()
796
* on the vba.
797
*/
798
799
#if 1
800
#define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL) \
801
| 0x8000000000000000ULL)
802
#else
803
void SBA_INLINE
804
sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
805
{
806
*pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
807
}
808
#endif
809
810
#ifdef ENABLE_MARK_CLEAN
811
/**
812
* Since DMA is i-cache coherent, any (complete) pages that were written via
813
* DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
814
* flush them when they get mapped into an executable vm-area.
815
*/
816
static void
817
mark_clean (void *addr, size_t size)
818
{
819
unsigned long pg_addr, end;
820
821
pg_addr = PAGE_ALIGN((unsigned long) addr);
822
end = (unsigned long) addr + size;
823
while (pg_addr + PAGE_SIZE <= end) {
824
struct page *page = virt_to_page((void *)pg_addr);
825
set_bit(PG_arch_1, &page->flags);
826
pg_addr += PAGE_SIZE;
827
}
828
}
829
#endif
830
831
/**
832
* sba_mark_invalid - invalidate one or more IO PDIR entries
833
* @ioc: IO MMU structure which owns the pdir we are interested in.
834
* @iova: IO Virtual Address mapped earlier
835
* @byte_cnt: number of bytes this mapping covers.
836
*
837
* Marking the IO PDIR entry(ies) as Invalid and invalidate
838
* corresponding IO TLB entry. The PCOM (Purge Command Register)
839
* is to purge stale entries in the IO TLB when unmapping entries.
840
*
841
* The PCOM register supports purging of multiple pages, with a minium
842
* of 1 page and a maximum of 2GB. Hardware requires the address be
843
* aligned to the size of the range being purged. The size of the range
844
* must be a power of 2. The "Cool perf optimization" in the
845
* allocation routine helps keep that true.
846
*/
847
static SBA_INLINE void
848
sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
849
{
850
u32 iovp = (u32) SBA_IOVP(ioc,iova);
851
852
int off = PDIR_INDEX(iovp);
853
854
/* Must be non-zero and rounded up */
855
ASSERT(byte_cnt > 0);
856
ASSERT(0 == (byte_cnt & ~iovp_mask));
857
858
#ifdef ASSERT_PDIR_SANITY
859
/* Assert first pdir entry is set */
860
if (!(ioc->pdir_base[off] >> 60)) {
861
sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
862
}
863
#endif
864
865
if (byte_cnt <= iovp_size)
866
{
867
ASSERT(off < ioc->pdir_size);
868
869
iovp |= iovp_shift; /* set "size" field for PCOM */
870
871
#ifndef FULL_VALID_PDIR
872
/*
873
** clear I/O PDIR entry "valid" bit
874
** Do NOT clear the rest - save it for debugging.
875
** We should only clear bits that have previously
876
** been enabled.
877
*/
878
ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
879
#else
880
/*
881
** If we want to maintain the PDIR as valid, put in
882
** the spill page so devices prefetching won't
883
** cause a hard fail.
884
*/
885
ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
886
#endif
887
} else {
888
u32 t = get_iovp_order(byte_cnt) + iovp_shift;
889
890
iovp |= t;
891
ASSERT(t <= 31); /* 2GB! Max value of "size" field */
892
893
do {
894
/* verify this pdir entry is enabled */
895
ASSERT(ioc->pdir_base[off] >> 63);
896
#ifndef FULL_VALID_PDIR
897
/* clear I/O Pdir entry "valid" bit first */
898
ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
899
#else
900
ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
901
#endif
902
off++;
903
byte_cnt -= iovp_size;
904
} while (byte_cnt > 0);
905
}
906
907
WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
908
}
909
910
/**
911
* sba_map_single_attrs - map one buffer and return IOVA for DMA
912
* @dev: instance of PCI owned by the driver that's asking.
913
* @addr: driver buffer to map.
914
* @size: number of bytes to map in driver buffer.
915
* @dir: R/W or both.
916
* @attrs: optional dma attributes
917
*
918
* See Documentation/PCI/PCI-DMA-mapping.txt
919
*/
920
static dma_addr_t sba_map_page(struct device *dev, struct page *page,
921
unsigned long poff, size_t size,
922
enum dma_data_direction dir,
923
struct dma_attrs *attrs)
924
{
925
struct ioc *ioc;
926
void *addr = page_address(page) + poff;
927
dma_addr_t iovp;
928
dma_addr_t offset;
929
u64 *pdir_start;
930
int pide;
931
#ifdef ASSERT_PDIR_SANITY
932
unsigned long flags;
933
#endif
934
#ifdef ALLOW_IOV_BYPASS
935
unsigned long pci_addr = virt_to_phys(addr);
936
#endif
937
938
#ifdef ALLOW_IOV_BYPASS
939
ASSERT(to_pci_dev(dev)->dma_mask);
940
/*
941
** Check if the PCI device can DMA to ptr... if so, just return ptr
942
*/
943
if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
944
/*
945
** Device is bit capable of DMA'ing to the buffer...
946
** just return the PCI address of ptr
947
*/
948
DBG_BYPASS("sba_map_single_attrs() bypass mask/addr: "
949
"0x%lx/0x%lx\n",
950
to_pci_dev(dev)->dma_mask, pci_addr);
951
return pci_addr;
952
}
953
#endif
954
ioc = GET_IOC(dev);
955
ASSERT(ioc);
956
957
prefetch(ioc->res_hint);
958
959
ASSERT(size > 0);
960
ASSERT(size <= DMA_CHUNK_SIZE);
961
962
/* save offset bits */
963
offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
964
965
/* round up to nearest iovp_size */
966
size = (size + offset + ~iovp_mask) & iovp_mask;
967
968
#ifdef ASSERT_PDIR_SANITY
969
spin_lock_irqsave(&ioc->res_lock, flags);
970
if (sba_check_pdir(ioc,"Check before sba_map_single_attrs()"))
971
panic("Sanity check failed");
972
spin_unlock_irqrestore(&ioc->res_lock, flags);
973
#endif
974
975
pide = sba_alloc_range(ioc, dev, size);
976
if (pide < 0)
977
return 0;
978
979
iovp = (dma_addr_t) pide << iovp_shift;
980
981
DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
982
983
pdir_start = &(ioc->pdir_base[pide]);
984
985
while (size > 0) {
986
ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
987
sba_io_pdir_entry(pdir_start, (unsigned long) addr);
988
989
DBG_RUN(" pdir 0x%p %lx\n", pdir_start, *pdir_start);
990
991
addr += iovp_size;
992
size -= iovp_size;
993
pdir_start++;
994
}
995
/* force pdir update */
996
wmb();
997
998
/* form complete address */
999
#ifdef ASSERT_PDIR_SANITY
1000
spin_lock_irqsave(&ioc->res_lock, flags);
1001
sba_check_pdir(ioc,"Check after sba_map_single_attrs()");
1002
spin_unlock_irqrestore(&ioc->res_lock, flags);
1003
#endif
1004
return SBA_IOVA(ioc, iovp, offset);
1005
}
1006
1007
static dma_addr_t sba_map_single_attrs(struct device *dev, void *addr,
1008
size_t size, enum dma_data_direction dir,
1009
struct dma_attrs *attrs)
1010
{
1011
return sba_map_page(dev, virt_to_page(addr),
1012
(unsigned long)addr & ~PAGE_MASK, size, dir, attrs);
1013
}
1014
1015
#ifdef ENABLE_MARK_CLEAN
1016
static SBA_INLINE void
1017
sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
1018
{
1019
u32 iovp = (u32) SBA_IOVP(ioc,iova);
1020
int off = PDIR_INDEX(iovp);
1021
void *addr;
1022
1023
if (size <= iovp_size) {
1024
addr = phys_to_virt(ioc->pdir_base[off] &
1025
~0xE000000000000FFFULL);
1026
mark_clean(addr, size);
1027
} else {
1028
do {
1029
addr = phys_to_virt(ioc->pdir_base[off] &
1030
~0xE000000000000FFFULL);
1031
mark_clean(addr, min(size, iovp_size));
1032
off++;
1033
size -= iovp_size;
1034
} while (size > 0);
1035
}
1036
}
1037
#endif
1038
1039
/**
1040
* sba_unmap_single_attrs - unmap one IOVA and free resources
1041
* @dev: instance of PCI owned by the driver that's asking.
1042
* @iova: IOVA of driver buffer previously mapped.
1043
* @size: number of bytes mapped in driver buffer.
1044
* @dir: R/W or both.
1045
* @attrs: optional dma attributes
1046
*
1047
* See Documentation/PCI/PCI-DMA-mapping.txt
1048
*/
1049
static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
1050
enum dma_data_direction dir, struct dma_attrs *attrs)
1051
{
1052
struct ioc *ioc;
1053
#if DELAYED_RESOURCE_CNT > 0
1054
struct sba_dma_pair *d;
1055
#endif
1056
unsigned long flags;
1057
dma_addr_t offset;
1058
1059
ioc = GET_IOC(dev);
1060
ASSERT(ioc);
1061
1062
#ifdef ALLOW_IOV_BYPASS
1063
if (likely((iova & ioc->imask) != ioc->ibase)) {
1064
/*
1065
** Address does not fall w/in IOVA, must be bypassing
1066
*/
1067
DBG_BYPASS("sba_unmap_single_attrs() bypass addr: 0x%lx\n",
1068
iova);
1069
1070
#ifdef ENABLE_MARK_CLEAN
1071
if (dir == DMA_FROM_DEVICE) {
1072
mark_clean(phys_to_virt(iova), size);
1073
}
1074
#endif
1075
return;
1076
}
1077
#endif
1078
offset = iova & ~iovp_mask;
1079
1080
DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
1081
1082
iova ^= offset; /* clear offset bits */
1083
size += offset;
1084
size = ROUNDUP(size, iovp_size);
1085
1086
#ifdef ENABLE_MARK_CLEAN
1087
if (dir == DMA_FROM_DEVICE)
1088
sba_mark_clean(ioc, iova, size);
1089
#endif
1090
1091
#if DELAYED_RESOURCE_CNT > 0
1092
spin_lock_irqsave(&ioc->saved_lock, flags);
1093
d = &(ioc->saved[ioc->saved_cnt]);
1094
d->iova = iova;
1095
d->size = size;
1096
if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1097
int cnt = ioc->saved_cnt;
1098
spin_lock(&ioc->res_lock);
1099
while (cnt--) {
1100
sba_mark_invalid(ioc, d->iova, d->size);
1101
sba_free_range(ioc, d->iova, d->size);
1102
d--;
1103
}
1104
ioc->saved_cnt = 0;
1105
READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1106
spin_unlock(&ioc->res_lock);
1107
}
1108
spin_unlock_irqrestore(&ioc->saved_lock, flags);
1109
#else /* DELAYED_RESOURCE_CNT == 0 */
1110
spin_lock_irqsave(&ioc->res_lock, flags);
1111
sba_mark_invalid(ioc, iova, size);
1112
sba_free_range(ioc, iova, size);
1113
READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1114
spin_unlock_irqrestore(&ioc->res_lock, flags);
1115
#endif /* DELAYED_RESOURCE_CNT == 0 */
1116
}
1117
1118
void sba_unmap_single_attrs(struct device *dev, dma_addr_t iova, size_t size,
1119
enum dma_data_direction dir, struct dma_attrs *attrs)
1120
{
1121
sba_unmap_page(dev, iova, size, dir, attrs);
1122
}
1123
1124
/**
1125
* sba_alloc_coherent - allocate/map shared mem for DMA
1126
* @dev: instance of PCI owned by the driver that's asking.
1127
* @size: number of bytes mapped in driver buffer.
1128
* @dma_handle: IOVA of new buffer.
1129
*
1130
* See Documentation/PCI/PCI-DMA-mapping.txt
1131
*/
1132
static void *
1133
sba_alloc_coherent (struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flags)
1134
{
1135
struct ioc *ioc;
1136
void *addr;
1137
1138
ioc = GET_IOC(dev);
1139
ASSERT(ioc);
1140
1141
#ifdef CONFIG_NUMA
1142
{
1143
struct page *page;
1144
page = alloc_pages_exact_node(ioc->node == MAX_NUMNODES ?
1145
numa_node_id() : ioc->node, flags,
1146
get_order(size));
1147
1148
if (unlikely(!page))
1149
return NULL;
1150
1151
addr = page_address(page);
1152
}
1153
#else
1154
addr = (void *) __get_free_pages(flags, get_order(size));
1155
#endif
1156
if (unlikely(!addr))
1157
return NULL;
1158
1159
memset(addr, 0, size);
1160
*dma_handle = virt_to_phys(addr);
1161
1162
#ifdef ALLOW_IOV_BYPASS
1163
ASSERT(dev->coherent_dma_mask);
1164
/*
1165
** Check if the PCI device can DMA to ptr... if so, just return ptr
1166
*/
1167
if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1168
DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1169
dev->coherent_dma_mask, *dma_handle);
1170
1171
return addr;
1172
}
1173
#endif
1174
1175
/*
1176
* If device can't bypass or bypass is disabled, pass the 32bit fake
1177
* device to map single to get an iova mapping.
1178
*/
1179
*dma_handle = sba_map_single_attrs(&ioc->sac_only_dev->dev, addr,
1180
size, 0, NULL);
1181
1182
return addr;
1183
}
1184
1185
1186
/**
1187
* sba_free_coherent - free/unmap shared mem for DMA
1188
* @dev: instance of PCI owned by the driver that's asking.
1189
* @size: number of bytes mapped in driver buffer.
1190
* @vaddr: virtual address IOVA of "consistent" buffer.
1191
* @dma_handler: IO virtual address of "consistent" buffer.
1192
*
1193
* See Documentation/PCI/PCI-DMA-mapping.txt
1194
*/
1195
static void sba_free_coherent (struct device *dev, size_t size, void *vaddr,
1196
dma_addr_t dma_handle)
1197
{
1198
sba_unmap_single_attrs(dev, dma_handle, size, 0, NULL);
1199
free_pages((unsigned long) vaddr, get_order(size));
1200
}
1201
1202
1203
/*
1204
** Since 0 is a valid pdir_base index value, can't use that
1205
** to determine if a value is valid or not. Use a flag to indicate
1206
** the SG list entry contains a valid pdir index.
1207
*/
1208
#define PIDE_FLAG 0x1UL
1209
1210
#ifdef DEBUG_LARGE_SG_ENTRIES
1211
int dump_run_sg = 0;
1212
#endif
1213
1214
1215
/**
1216
* sba_fill_pdir - write allocated SG entries into IO PDIR
1217
* @ioc: IO MMU structure which owns the pdir we are interested in.
1218
* @startsg: list of IOVA/size pairs
1219
* @nents: number of entries in startsg list
1220
*
1221
* Take preprocessed SG list and write corresponding entries
1222
* in the IO PDIR.
1223
*/
1224
1225
static SBA_INLINE int
1226
sba_fill_pdir(
1227
struct ioc *ioc,
1228
struct scatterlist *startsg,
1229
int nents)
1230
{
1231
struct scatterlist *dma_sg = startsg; /* pointer to current DMA */
1232
int n_mappings = 0;
1233
u64 *pdirp = NULL;
1234
unsigned long dma_offset = 0;
1235
1236
while (nents-- > 0) {
1237
int cnt = startsg->dma_length;
1238
startsg->dma_length = 0;
1239
1240
#ifdef DEBUG_LARGE_SG_ENTRIES
1241
if (dump_run_sg)
1242
printk(" %2d : %08lx/%05x %p\n",
1243
nents, startsg->dma_address, cnt,
1244
sba_sg_address(startsg));
1245
#else
1246
DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1247
nents, startsg->dma_address, cnt,
1248
sba_sg_address(startsg));
1249
#endif
1250
/*
1251
** Look for the start of a new DMA stream
1252
*/
1253
if (startsg->dma_address & PIDE_FLAG) {
1254
u32 pide = startsg->dma_address & ~PIDE_FLAG;
1255
dma_offset = (unsigned long) pide & ~iovp_mask;
1256
startsg->dma_address = 0;
1257
if (n_mappings)
1258
dma_sg = sg_next(dma_sg);
1259
dma_sg->dma_address = pide | ioc->ibase;
1260
pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1261
n_mappings++;
1262
}
1263
1264
/*
1265
** Look for a VCONTIG chunk
1266
*/
1267
if (cnt) {
1268
unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1269
ASSERT(pdirp);
1270
1271
/* Since multiple Vcontig blocks could make up
1272
** one DMA stream, *add* cnt to dma_len.
1273
*/
1274
dma_sg->dma_length += cnt;
1275
cnt += dma_offset;
1276
dma_offset=0; /* only want offset on first chunk */
1277
cnt = ROUNDUP(cnt, iovp_size);
1278
do {
1279
sba_io_pdir_entry(pdirp, vaddr);
1280
vaddr += iovp_size;
1281
cnt -= iovp_size;
1282
pdirp++;
1283
} while (cnt > 0);
1284
}
1285
startsg = sg_next(startsg);
1286
}
1287
/* force pdir update */
1288
wmb();
1289
1290
#ifdef DEBUG_LARGE_SG_ENTRIES
1291
dump_run_sg = 0;
1292
#endif
1293
return(n_mappings);
1294
}
1295
1296
1297
/*
1298
** Two address ranges are DMA contiguous *iff* "end of prev" and
1299
** "start of next" are both on an IOV page boundary.
1300
**
1301
** (shift left is a quick trick to mask off upper bits)
1302
*/
1303
#define DMA_CONTIG(__X, __Y) \
1304
(((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1305
1306
1307
/**
1308
* sba_coalesce_chunks - preprocess the SG list
1309
* @ioc: IO MMU structure which owns the pdir we are interested in.
1310
* @startsg: list of IOVA/size pairs
1311
* @nents: number of entries in startsg list
1312
*
1313
* First pass is to walk the SG list and determine where the breaks are
1314
* in the DMA stream. Allocates PDIR entries but does not fill them.
1315
* Returns the number of DMA chunks.
1316
*
1317
* Doing the fill separate from the coalescing/allocation keeps the
1318
* code simpler. Future enhancement could make one pass through
1319
* the sglist do both.
1320
*/
1321
static SBA_INLINE int
1322
sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
1323
struct scatterlist *startsg,
1324
int nents)
1325
{
1326
struct scatterlist *vcontig_sg; /* VCONTIG chunk head */
1327
unsigned long vcontig_len; /* len of VCONTIG chunk */
1328
unsigned long vcontig_end;
1329
struct scatterlist *dma_sg; /* next DMA stream head */
1330
unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1331
int n_mappings = 0;
1332
unsigned int max_seg_size = dma_get_max_seg_size(dev);
1333
int idx;
1334
1335
while (nents > 0) {
1336
unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1337
1338
/*
1339
** Prepare for first/next DMA stream
1340
*/
1341
dma_sg = vcontig_sg = startsg;
1342
dma_len = vcontig_len = vcontig_end = startsg->length;
1343
vcontig_end += vaddr;
1344
dma_offset = vaddr & ~iovp_mask;
1345
1346
/* PARANOID: clear entries */
1347
startsg->dma_address = startsg->dma_length = 0;
1348
1349
/*
1350
** This loop terminates one iteration "early" since
1351
** it's always looking one "ahead".
1352
*/
1353
while (--nents > 0) {
1354
unsigned long vaddr; /* tmp */
1355
1356
startsg = sg_next(startsg);
1357
1358
/* PARANOID */
1359
startsg->dma_address = startsg->dma_length = 0;
1360
1361
/* catch brokenness in SCSI layer */
1362
ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1363
1364
/*
1365
** First make sure current dma stream won't
1366
** exceed DMA_CHUNK_SIZE if we coalesce the
1367
** next entry.
1368
*/
1369
if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1370
> DMA_CHUNK_SIZE)
1371
break;
1372
1373
if (dma_len + startsg->length > max_seg_size)
1374
break;
1375
1376
/*
1377
** Then look for virtually contiguous blocks.
1378
**
1379
** append the next transaction?
1380
*/
1381
vaddr = (unsigned long) sba_sg_address(startsg);
1382
if (vcontig_end == vaddr)
1383
{
1384
vcontig_len += startsg->length;
1385
vcontig_end += startsg->length;
1386
dma_len += startsg->length;
1387
continue;
1388
}
1389
1390
#ifdef DEBUG_LARGE_SG_ENTRIES
1391
dump_run_sg = (vcontig_len > iovp_size);
1392
#endif
1393
1394
/*
1395
** Not virtually contiguous.
1396
** Terminate prev chunk.
1397
** Start a new chunk.
1398
**
1399
** Once we start a new VCONTIG chunk, dma_offset
1400
** can't change. And we need the offset from the first
1401
** chunk - not the last one. Ergo Successive chunks
1402
** must start on page boundaries and dove tail
1403
** with it's predecessor.
1404
*/
1405
vcontig_sg->dma_length = vcontig_len;
1406
1407
vcontig_sg = startsg;
1408
vcontig_len = startsg->length;
1409
1410
/*
1411
** 3) do the entries end/start on page boundaries?
1412
** Don't update vcontig_end until we've checked.
1413
*/
1414
if (DMA_CONTIG(vcontig_end, vaddr))
1415
{
1416
vcontig_end = vcontig_len + vaddr;
1417
dma_len += vcontig_len;
1418
continue;
1419
} else {
1420
break;
1421
}
1422
}
1423
1424
/*
1425
** End of DMA Stream
1426
** Terminate last VCONTIG block.
1427
** Allocate space for DMA stream.
1428
*/
1429
vcontig_sg->dma_length = vcontig_len;
1430
dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1431
ASSERT(dma_len <= DMA_CHUNK_SIZE);
1432
idx = sba_alloc_range(ioc, dev, dma_len);
1433
if (idx < 0) {
1434
dma_sg->dma_length = 0;
1435
return -1;
1436
}
1437
dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift)
1438
| dma_offset);
1439
n_mappings++;
1440
}
1441
1442
return n_mappings;
1443
}
1444
1445
static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1446
int nents, enum dma_data_direction dir,
1447
struct dma_attrs *attrs);
1448
/**
1449
* sba_map_sg - map Scatter/Gather list
1450
* @dev: instance of PCI owned by the driver that's asking.
1451
* @sglist: array of buffer/length pairs
1452
* @nents: number of entries in list
1453
* @dir: R/W or both.
1454
* @attrs: optional dma attributes
1455
*
1456
* See Documentation/PCI/PCI-DMA-mapping.txt
1457
*/
1458
static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist,
1459
int nents, enum dma_data_direction dir,
1460
struct dma_attrs *attrs)
1461
{
1462
struct ioc *ioc;
1463
int coalesced, filled = 0;
1464
#ifdef ASSERT_PDIR_SANITY
1465
unsigned long flags;
1466
#endif
1467
#ifdef ALLOW_IOV_BYPASS_SG
1468
struct scatterlist *sg;
1469
#endif
1470
1471
DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1472
ioc = GET_IOC(dev);
1473
ASSERT(ioc);
1474
1475
#ifdef ALLOW_IOV_BYPASS_SG
1476
ASSERT(to_pci_dev(dev)->dma_mask);
1477
if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1478
for_each_sg(sglist, sg, nents, filled) {
1479
sg->dma_length = sg->length;
1480
sg->dma_address = virt_to_phys(sba_sg_address(sg));
1481
}
1482
return filled;
1483
}
1484
#endif
1485
/* Fast path single entry scatterlists. */
1486
if (nents == 1) {
1487
sglist->dma_length = sglist->length;
1488
sglist->dma_address = sba_map_single_attrs(dev, sba_sg_address(sglist), sglist->length, dir, attrs);
1489
return 1;
1490
}
1491
1492
#ifdef ASSERT_PDIR_SANITY
1493
spin_lock_irqsave(&ioc->res_lock, flags);
1494
if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()"))
1495
{
1496
sba_dump_sg(ioc, sglist, nents);
1497
panic("Check before sba_map_sg_attrs()");
1498
}
1499
spin_unlock_irqrestore(&ioc->res_lock, flags);
1500
#endif
1501
1502
prefetch(ioc->res_hint);
1503
1504
/*
1505
** First coalesce the chunks and allocate I/O pdir space
1506
**
1507
** If this is one DMA stream, we can properly map using the
1508
** correct virtual address associated with each DMA page.
1509
** w/o this association, we wouldn't have coherent DMA!
1510
** Access to the virtual address is what forces a two pass algorithm.
1511
*/
1512
coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
1513
if (coalesced < 0) {
1514
sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs);
1515
return 0;
1516
}
1517
1518
/*
1519
** Program the I/O Pdir
1520
**
1521
** map the virtual addresses to the I/O Pdir
1522
** o dma_address will contain the pdir index
1523
** o dma_len will contain the number of bytes to map
1524
** o address contains the virtual address.
1525
*/
1526
filled = sba_fill_pdir(ioc, sglist, nents);
1527
1528
#ifdef ASSERT_PDIR_SANITY
1529
spin_lock_irqsave(&ioc->res_lock, flags);
1530
if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()"))
1531
{
1532
sba_dump_sg(ioc, sglist, nents);
1533
panic("Check after sba_map_sg_attrs()\n");
1534
}
1535
spin_unlock_irqrestore(&ioc->res_lock, flags);
1536
#endif
1537
1538
ASSERT(coalesced == filled);
1539
DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1540
1541
return filled;
1542
}
1543
1544
/**
1545
* sba_unmap_sg_attrs - unmap Scatter/Gather list
1546
* @dev: instance of PCI owned by the driver that's asking.
1547
* @sglist: array of buffer/length pairs
1548
* @nents: number of entries in list
1549
* @dir: R/W or both.
1550
* @attrs: optional dma attributes
1551
*
1552
* See Documentation/PCI/PCI-DMA-mapping.txt
1553
*/
1554
static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1555
int nents, enum dma_data_direction dir,
1556
struct dma_attrs *attrs)
1557
{
1558
#ifdef ASSERT_PDIR_SANITY
1559
struct ioc *ioc;
1560
unsigned long flags;
1561
#endif
1562
1563
DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1564
__func__, nents, sba_sg_address(sglist), sglist->length);
1565
1566
#ifdef ASSERT_PDIR_SANITY
1567
ioc = GET_IOC(dev);
1568
ASSERT(ioc);
1569
1570
spin_lock_irqsave(&ioc->res_lock, flags);
1571
sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()");
1572
spin_unlock_irqrestore(&ioc->res_lock, flags);
1573
#endif
1574
1575
while (nents && sglist->dma_length) {
1576
1577
sba_unmap_single_attrs(dev, sglist->dma_address,
1578
sglist->dma_length, dir, attrs);
1579
sglist = sg_next(sglist);
1580
nents--;
1581
}
1582
1583
DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1584
1585
#ifdef ASSERT_PDIR_SANITY
1586
spin_lock_irqsave(&ioc->res_lock, flags);
1587
sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()");
1588
spin_unlock_irqrestore(&ioc->res_lock, flags);
1589
#endif
1590
1591
}
1592
1593
/**************************************************************
1594
*
1595
* Initialization and claim
1596
*
1597
***************************************************************/
1598
1599
static void __init
1600
ioc_iova_init(struct ioc *ioc)
1601
{
1602
int tcnfg;
1603
int agp_found = 0;
1604
struct pci_dev *device = NULL;
1605
#ifdef FULL_VALID_PDIR
1606
unsigned long index;
1607
#endif
1608
1609
/*
1610
** Firmware programs the base and size of a "safe IOVA space"
1611
** (one that doesn't overlap memory or LMMIO space) in the
1612
** IBASE and IMASK registers.
1613
*/
1614
ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1615
ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1616
1617
ioc->iov_size = ~ioc->imask + 1;
1618
1619
DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1620
__func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1621
ioc->iov_size >> 20);
1622
1623
switch (iovp_size) {
1624
case 4*1024: tcnfg = 0; break;
1625
case 8*1024: tcnfg = 1; break;
1626
case 16*1024: tcnfg = 2; break;
1627
case 64*1024: tcnfg = 3; break;
1628
default:
1629
panic(PFX "Unsupported IOTLB page size %ldK",
1630
iovp_size >> 10);
1631
break;
1632
}
1633
WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1634
1635
ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1636
ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1637
get_order(ioc->pdir_size));
1638
if (!ioc->pdir_base)
1639
panic(PFX "Couldn't allocate I/O Page Table\n");
1640
1641
memset(ioc->pdir_base, 0, ioc->pdir_size);
1642
1643
DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
1644
iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1645
1646
ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1647
WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1648
1649
/*
1650
** If an AGP device is present, only use half of the IOV space
1651
** for PCI DMA. Unfortunately we can't know ahead of time
1652
** whether GART support will actually be used, for now we
1653
** can just key on an AGP device found in the system.
1654
** We program the next pdir index after we stop w/ a key for
1655
** the GART code to handshake on.
1656
*/
1657
for_each_pci_dev(device)
1658
agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1659
1660
if (agp_found && reserve_sba_gart) {
1661
printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1662
ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1663
ioc->pdir_size /= 2;
1664
((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1665
}
1666
#ifdef FULL_VALID_PDIR
1667
/*
1668
** Check to see if the spill page has been allocated, we don't need more than
1669
** one across multiple SBAs.
1670
*/
1671
if (!prefetch_spill_page) {
1672
char *spill_poison = "SBAIOMMU POISON";
1673
int poison_size = 16;
1674
void *poison_addr, *addr;
1675
1676
addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1677
if (!addr)
1678
panic(PFX "Couldn't allocate PDIR spill page\n");
1679
1680
poison_addr = addr;
1681
for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1682
memcpy(poison_addr, spill_poison, poison_size);
1683
1684
prefetch_spill_page = virt_to_phys(addr);
1685
1686
DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
1687
}
1688
/*
1689
** Set all the PDIR entries valid w/ the spill page as the target
1690
*/
1691
for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1692
((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1693
#endif
1694
1695
/* Clear I/O TLB of any possible entries */
1696
WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1697
READ_REG(ioc->ioc_hpa + IOC_PCOM);
1698
1699
/* Enable IOVA translation */
1700
WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1701
READ_REG(ioc->ioc_hpa + IOC_IBASE);
1702
}
1703
1704
static void __init
1705
ioc_resource_init(struct ioc *ioc)
1706
{
1707
spin_lock_init(&ioc->res_lock);
1708
#if DELAYED_RESOURCE_CNT > 0
1709
spin_lock_init(&ioc->saved_lock);
1710
#endif
1711
1712
/* resource map size dictated by pdir_size */
1713
ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1714
ioc->res_size >>= 3; /* convert bit count to byte count */
1715
DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1716
1717
ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1718
get_order(ioc->res_size));
1719
if (!ioc->res_map)
1720
panic(PFX "Couldn't allocate resource map\n");
1721
1722
memset(ioc->res_map, 0, ioc->res_size);
1723
/* next available IOVP - circular search */
1724
ioc->res_hint = (unsigned long *) ioc->res_map;
1725
1726
#ifdef ASSERT_PDIR_SANITY
1727
/* Mark first bit busy - ie no IOVA 0 */
1728
ioc->res_map[0] = 0x1;
1729
ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1730
#endif
1731
#ifdef FULL_VALID_PDIR
1732
/* Mark the last resource used so we don't prefetch beyond IOVA space */
1733
ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1734
ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1735
| prefetch_spill_page);
1736
#endif
1737
1738
DBG_INIT("%s() res_map %x %p\n", __func__,
1739
ioc->res_size, (void *) ioc->res_map);
1740
}
1741
1742
static void __init
1743
ioc_sac_init(struct ioc *ioc)
1744
{
1745
struct pci_dev *sac = NULL;
1746
struct pci_controller *controller = NULL;
1747
1748
/*
1749
* pci_alloc_coherent() must return a DMA address which is
1750
* SAC (single address cycle) addressable, so allocate a
1751
* pseudo-device to enforce that.
1752
*/
1753
sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1754
if (!sac)
1755
panic(PFX "Couldn't allocate struct pci_dev");
1756
1757
controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1758
if (!controller)
1759
panic(PFX "Couldn't allocate struct pci_controller");
1760
1761
controller->iommu = ioc;
1762
sac->sysdata = controller;
1763
sac->dma_mask = 0xFFFFFFFFUL;
1764
#ifdef CONFIG_PCI
1765
sac->dev.bus = &pci_bus_type;
1766
#endif
1767
ioc->sac_only_dev = sac;
1768
}
1769
1770
static void __init
1771
ioc_zx1_init(struct ioc *ioc)
1772
{
1773
unsigned long rope_config;
1774
unsigned int i;
1775
1776
if (ioc->rev < 0x20)
1777
panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1778
1779
/* 38 bit memory controller + extra bit for range displaced by MMIO */
1780
ioc->dma_mask = (0x1UL << 39) - 1;
1781
1782
/*
1783
** Clear ROPE(N)_CONFIG AO bit.
1784
** Disables "NT Ordering" (~= !"Relaxed Ordering")
1785
** Overrides bit 1 in DMA Hint Sets.
1786
** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1787
*/
1788
for (i=0; i<(8*8); i+=8) {
1789
rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1790
rope_config &= ~IOC_ROPE_AO;
1791
WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1792
}
1793
}
1794
1795
typedef void (initfunc)(struct ioc *);
1796
1797
struct ioc_iommu {
1798
u32 func_id;
1799
char *name;
1800
initfunc *init;
1801
};
1802
1803
static struct ioc_iommu ioc_iommu_info[] __initdata = {
1804
{ ZX1_IOC_ID, "zx1", ioc_zx1_init },
1805
{ ZX2_IOC_ID, "zx2", NULL },
1806
{ SX1000_IOC_ID, "sx1000", NULL },
1807
{ SX2000_IOC_ID, "sx2000", NULL },
1808
};
1809
1810
static struct ioc * __init
1811
ioc_init(unsigned long hpa, void *handle)
1812
{
1813
struct ioc *ioc;
1814
struct ioc_iommu *info;
1815
1816
ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1817
if (!ioc)
1818
return NULL;
1819
1820
ioc->next = ioc_list;
1821
ioc_list = ioc;
1822
1823
ioc->handle = handle;
1824
ioc->ioc_hpa = ioremap(hpa, 0x1000);
1825
1826
ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1827
ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1828
ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL; /* conservative */
1829
1830
for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1831
if (ioc->func_id == info->func_id) {
1832
ioc->name = info->name;
1833
if (info->init)
1834
(info->init)(ioc);
1835
}
1836
}
1837
1838
iovp_size = (1 << iovp_shift);
1839
iovp_mask = ~(iovp_size - 1);
1840
1841
DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
1842
PAGE_SIZE >> 10, iovp_size >> 10);
1843
1844
if (!ioc->name) {
1845
ioc->name = kmalloc(24, GFP_KERNEL);
1846
if (ioc->name)
1847
sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1848
ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1849
else
1850
ioc->name = "Unknown";
1851
}
1852
1853
ioc_iova_init(ioc);
1854
ioc_resource_init(ioc);
1855
ioc_sac_init(ioc);
1856
1857
if ((long) ~iovp_mask > (long) ia64_max_iommu_merge_mask)
1858
ia64_max_iommu_merge_mask = ~iovp_mask;
1859
1860
printk(KERN_INFO PFX
1861
"%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1862
ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1863
hpa, ioc->iov_size >> 20, ioc->ibase);
1864
1865
return ioc;
1866
}
1867
1868
1869
1870
/**************************************************************************
1871
**
1872
** SBA initialization code (HW and SW)
1873
**
1874
** o identify SBA chip itself
1875
** o FIXME: initialize DMA hints for reasonable defaults
1876
**
1877
**************************************************************************/
1878
1879
#ifdef CONFIG_PROC_FS
1880
static void *
1881
ioc_start(struct seq_file *s, loff_t *pos)
1882
{
1883
struct ioc *ioc;
1884
loff_t n = *pos;
1885
1886
for (ioc = ioc_list; ioc; ioc = ioc->next)
1887
if (!n--)
1888
return ioc;
1889
1890
return NULL;
1891
}
1892
1893
static void *
1894
ioc_next(struct seq_file *s, void *v, loff_t *pos)
1895
{
1896
struct ioc *ioc = v;
1897
1898
++*pos;
1899
return ioc->next;
1900
}
1901
1902
static void
1903
ioc_stop(struct seq_file *s, void *v)
1904
{
1905
}
1906
1907
static int
1908
ioc_show(struct seq_file *s, void *v)
1909
{
1910
struct ioc *ioc = v;
1911
unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1912
int i, used = 0;
1913
1914
seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1915
ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1916
#ifdef CONFIG_NUMA
1917
if (ioc->node != MAX_NUMNODES)
1918
seq_printf(s, "NUMA node : %d\n", ioc->node);
1919
#endif
1920
seq_printf(s, "IOVA size : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1921
seq_printf(s, "IOVA page size : %ld kb\n", iovp_size/1024);
1922
1923
for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1924
used += hweight64(*res_ptr);
1925
1926
seq_printf(s, "PDIR size : %d entries\n", ioc->pdir_size >> 3);
1927
seq_printf(s, "PDIR used : %d entries\n", used);
1928
1929
#ifdef PDIR_SEARCH_TIMING
1930
{
1931
unsigned long i = 0, avg = 0, min, max;
1932
min = max = ioc->avg_search[0];
1933
for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1934
avg += ioc->avg_search[i];
1935
if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1936
if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1937
}
1938
avg /= SBA_SEARCH_SAMPLE;
1939
seq_printf(s, "Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1940
min, avg, max);
1941
}
1942
#endif
1943
#ifndef ALLOW_IOV_BYPASS
1944
seq_printf(s, "IOVA bypass disabled\n");
1945
#endif
1946
return 0;
1947
}
1948
1949
static const struct seq_operations ioc_seq_ops = {
1950
.start = ioc_start,
1951
.next = ioc_next,
1952
.stop = ioc_stop,
1953
.show = ioc_show
1954
};
1955
1956
static int
1957
ioc_open(struct inode *inode, struct file *file)
1958
{
1959
return seq_open(file, &ioc_seq_ops);
1960
}
1961
1962
static const struct file_operations ioc_fops = {
1963
.open = ioc_open,
1964
.read = seq_read,
1965
.llseek = seq_lseek,
1966
.release = seq_release
1967
};
1968
1969
static void __init
1970
ioc_proc_init(void)
1971
{
1972
struct proc_dir_entry *dir;
1973
1974
dir = proc_mkdir("bus/mckinley", NULL);
1975
if (!dir)
1976
return;
1977
1978
proc_create(ioc_list->name, 0, dir, &ioc_fops);
1979
}
1980
#endif
1981
1982
static void
1983
sba_connect_bus(struct pci_bus *bus)
1984
{
1985
acpi_handle handle, parent;
1986
acpi_status status;
1987
struct ioc *ioc;
1988
1989
if (!PCI_CONTROLLER(bus))
1990
panic(PFX "no sysdata on bus %d!\n", bus->number);
1991
1992
if (PCI_CONTROLLER(bus)->iommu)
1993
return;
1994
1995
handle = PCI_CONTROLLER(bus)->acpi_handle;
1996
if (!handle)
1997
return;
1998
1999
/*
2000
* The IOC scope encloses PCI root bridges in the ACPI
2001
* namespace, so work our way out until we find an IOC we
2002
* claimed previously.
2003
*/
2004
do {
2005
for (ioc = ioc_list; ioc; ioc = ioc->next)
2006
if (ioc->handle == handle) {
2007
PCI_CONTROLLER(bus)->iommu = ioc;
2008
return;
2009
}
2010
2011
status = acpi_get_parent(handle, &parent);
2012
handle = parent;
2013
} while (ACPI_SUCCESS(status));
2014
2015
printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
2016
}
2017
2018
#ifdef CONFIG_NUMA
2019
static void __init
2020
sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
2021
{
2022
unsigned int node;
2023
int pxm;
2024
2025
ioc->node = MAX_NUMNODES;
2026
2027
pxm = acpi_get_pxm(handle);
2028
2029
if (pxm < 0)
2030
return;
2031
2032
node = pxm_to_node(pxm);
2033
2034
if (node >= MAX_NUMNODES || !node_online(node))
2035
return;
2036
2037
ioc->node = node;
2038
return;
2039
}
2040
#else
2041
#define sba_map_ioc_to_node(ioc, handle)
2042
#endif
2043
2044
static int __init
2045
acpi_sba_ioc_add(struct acpi_device *device)
2046
{
2047
struct ioc *ioc;
2048
acpi_status status;
2049
u64 hpa, length;
2050
struct acpi_device_info *adi;
2051
2052
status = hp_acpi_csr_space(device->handle, &hpa, &length);
2053
if (ACPI_FAILURE(status))
2054
return 1;
2055
2056
status = acpi_get_object_info(device->handle, &adi);
2057
if (ACPI_FAILURE(status))
2058
return 1;
2059
2060
/*
2061
* For HWP0001, only SBA appears in ACPI namespace. It encloses the PCI
2062
* root bridges, and its CSR space includes the IOC function.
2063
*/
2064
if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) {
2065
hpa += ZX1_IOC_OFFSET;
2066
/* zx1 based systems default to kernel page size iommu pages */
2067
if (!iovp_shift)
2068
iovp_shift = min(PAGE_SHIFT, 16);
2069
}
2070
kfree(adi);
2071
2072
/*
2073
* default anything not caught above or specified on cmdline to 4k
2074
* iommu page size
2075
*/
2076
if (!iovp_shift)
2077
iovp_shift = 12;
2078
2079
ioc = ioc_init(hpa, device->handle);
2080
if (!ioc)
2081
return 1;
2082
2083
/* setup NUMA node association */
2084
sba_map_ioc_to_node(ioc, device->handle);
2085
return 0;
2086
}
2087
2088
static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2089
{"HWP0001", 0},
2090
{"HWP0004", 0},
2091
{"", 0},
2092
};
2093
static struct acpi_driver acpi_sba_ioc_driver = {
2094
.name = "IOC IOMMU Driver",
2095
.ids = hp_ioc_iommu_device_ids,
2096
.ops = {
2097
.add = acpi_sba_ioc_add,
2098
},
2099
};
2100
2101
extern struct dma_map_ops swiotlb_dma_ops;
2102
2103
static int __init
2104
sba_init(void)
2105
{
2106
if (!ia64_platform_is("hpzx1") && !ia64_platform_is("hpzx1_swiotlb"))
2107
return 0;
2108
2109
#if defined(CONFIG_IA64_GENERIC)
2110
/* If we are booting a kdump kernel, the sba_iommu will
2111
* cause devices that were not shutdown properly to MCA
2112
* as soon as they are turned back on. Our only option for
2113
* a successful kdump kernel boot is to use the swiotlb.
2114
*/
2115
if (is_kdump_kernel()) {
2116
dma_ops = &swiotlb_dma_ops;
2117
if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2118
panic("Unable to initialize software I/O TLB:"
2119
" Try machvec=dig boot option");
2120
machvec_init("dig");
2121
return 0;
2122
}
2123
#endif
2124
2125
acpi_bus_register_driver(&acpi_sba_ioc_driver);
2126
if (!ioc_list) {
2127
#ifdef CONFIG_IA64_GENERIC
2128
/*
2129
* If we didn't find something sba_iommu can claim, we
2130
* need to setup the swiotlb and switch to the dig machvec.
2131
*/
2132
dma_ops = &swiotlb_dma_ops;
2133
if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2134
panic("Unable to find SBA IOMMU or initialize "
2135
"software I/O TLB: Try machvec=dig boot option");
2136
machvec_init("dig");
2137
#else
2138
panic("Unable to find SBA IOMMU: Try a generic or DIG kernel");
2139
#endif
2140
return 0;
2141
}
2142
2143
#if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_HP_ZX1_SWIOTLB)
2144
/*
2145
* hpzx1_swiotlb needs to have a fairly small swiotlb bounce
2146
* buffer setup to support devices with smaller DMA masks than
2147
* sba_iommu can handle.
2148
*/
2149
if (ia64_platform_is("hpzx1_swiotlb")) {
2150
extern void hwsw_init(void);
2151
2152
hwsw_init();
2153
}
2154
#endif
2155
2156
#ifdef CONFIG_PCI
2157
{
2158
struct pci_bus *b = NULL;
2159
while ((b = pci_find_next_bus(b)) != NULL)
2160
sba_connect_bus(b);
2161
}
2162
#endif
2163
2164
#ifdef CONFIG_PROC_FS
2165
ioc_proc_init();
2166
#endif
2167
return 0;
2168
}
2169
2170
subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2171
2172
static int __init
2173
nosbagart(char *str)
2174
{
2175
reserve_sba_gart = 0;
2176
return 1;
2177
}
2178
2179
static int sba_dma_supported (struct device *dev, u64 mask)
2180
{
2181
/* make sure it's at least 32bit capable */
2182
return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2183
}
2184
2185
static int sba_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
2186
{
2187
return 0;
2188
}
2189
2190
__setup("nosbagart", nosbagart);
2191
2192
static int __init
2193
sba_page_override(char *str)
2194
{
2195
unsigned long page_size;
2196
2197
page_size = memparse(str, &str);
2198
switch (page_size) {
2199
case 4096:
2200
case 8192:
2201
case 16384:
2202
case 65536:
2203
iovp_shift = ffs(page_size) - 1;
2204
break;
2205
default:
2206
printk("%s: unknown/unsupported iommu page size %ld\n",
2207
__func__, page_size);
2208
}
2209
2210
return 1;
2211
}
2212
2213
__setup("sbapagesize=",sba_page_override);
2214
2215
struct dma_map_ops sba_dma_ops = {
2216
.alloc_coherent = sba_alloc_coherent,
2217
.free_coherent = sba_free_coherent,
2218
.map_page = sba_map_page,
2219
.unmap_page = sba_unmap_page,
2220
.map_sg = sba_map_sg_attrs,
2221
.unmap_sg = sba_unmap_sg_attrs,
2222
.sync_single_for_cpu = machvec_dma_sync_single,
2223
.sync_sg_for_cpu = machvec_dma_sync_sg,
2224
.sync_single_for_device = machvec_dma_sync_single,
2225
.sync_sg_for_device = machvec_dma_sync_sg,
2226
.dma_supported = sba_dma_supported,
2227
.mapping_error = sba_dma_mapping_error,
2228
};
2229
2230
void sba_dma_init(void)
2231
{
2232
dma_ops = &sba_dma_ops;
2233
}
2234
2235