Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/include/asm/bitops.h
17292 views
1
#ifndef _ASM_IA64_BITOPS_H
2
#define _ASM_IA64_BITOPS_H
3
4
/*
5
* Copyright (C) 1998-2003 Hewlett-Packard Co
6
* David Mosberger-Tang <[email protected]>
7
*
8
* 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
9
* O(1) scheduler patch
10
*/
11
12
#ifndef _LINUX_BITOPS_H
13
#error only <linux/bitops.h> can be included directly
14
#endif
15
16
#include <linux/compiler.h>
17
#include <linux/types.h>
18
#include <asm/intrinsics.h>
19
20
/**
21
* set_bit - Atomically set a bit in memory
22
* @nr: the bit to set
23
* @addr: the address to start counting from
24
*
25
* This function is atomic and may not be reordered. See __set_bit()
26
* if you do not require the atomic guarantees.
27
* Note that @nr may be almost arbitrarily large; this function is not
28
* restricted to acting on a single-word quantity.
29
*
30
* The address must be (at least) "long" aligned.
31
* Note that there are driver (e.g., eepro100) which use these operations to
32
* operate on hw-defined data-structures, so we can't easily change these
33
* operations to force a bigger alignment.
34
*
35
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
36
*/
37
static __inline__ void
38
set_bit (int nr, volatile void *addr)
39
{
40
__u32 bit, old, new;
41
volatile __u32 *m;
42
CMPXCHG_BUGCHECK_DECL
43
44
m = (volatile __u32 *) addr + (nr >> 5);
45
bit = 1 << (nr & 31);
46
do {
47
CMPXCHG_BUGCHECK(m);
48
old = *m;
49
new = old | bit;
50
} while (cmpxchg_acq(m, old, new) != old);
51
}
52
53
/**
54
* __set_bit - Set a bit in memory
55
* @nr: the bit to set
56
* @addr: the address to start counting from
57
*
58
* Unlike set_bit(), this function is non-atomic and may be reordered.
59
* If it's called on the same region of memory simultaneously, the effect
60
* may be that only one operation succeeds.
61
*/
62
static __inline__ void
63
__set_bit (int nr, volatile void *addr)
64
{
65
*((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
66
}
67
68
/*
69
* clear_bit() has "acquire" semantics.
70
*/
71
#define smp_mb__before_clear_bit() smp_mb()
72
#define smp_mb__after_clear_bit() do { /* skip */; } while (0)
73
74
/**
75
* clear_bit - Clears a bit in memory
76
* @nr: Bit to clear
77
* @addr: Address to start counting from
78
*
79
* clear_bit() is atomic and may not be reordered. However, it does
80
* not contain a memory barrier, so if it is used for locking purposes,
81
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
82
* in order to ensure changes are visible on other processors.
83
*/
84
static __inline__ void
85
clear_bit (int nr, volatile void *addr)
86
{
87
__u32 mask, old, new;
88
volatile __u32 *m;
89
CMPXCHG_BUGCHECK_DECL
90
91
m = (volatile __u32 *) addr + (nr >> 5);
92
mask = ~(1 << (nr & 31));
93
do {
94
CMPXCHG_BUGCHECK(m);
95
old = *m;
96
new = old & mask;
97
} while (cmpxchg_acq(m, old, new) != old);
98
}
99
100
/**
101
* clear_bit_unlock - Clears a bit in memory with release
102
* @nr: Bit to clear
103
* @addr: Address to start counting from
104
*
105
* clear_bit_unlock() is atomic and may not be reordered. It does
106
* contain a memory barrier suitable for unlock type operations.
107
*/
108
static __inline__ void
109
clear_bit_unlock (int nr, volatile void *addr)
110
{
111
__u32 mask, old, new;
112
volatile __u32 *m;
113
CMPXCHG_BUGCHECK_DECL
114
115
m = (volatile __u32 *) addr + (nr >> 5);
116
mask = ~(1 << (nr & 31));
117
do {
118
CMPXCHG_BUGCHECK(m);
119
old = *m;
120
new = old & mask;
121
} while (cmpxchg_rel(m, old, new) != old);
122
}
123
124
/**
125
* __clear_bit_unlock - Non-atomically clears a bit in memory with release
126
* @nr: Bit to clear
127
* @addr: Address to start counting from
128
*
129
* Similarly to clear_bit_unlock, the implementation uses a store
130
* with release semantics. See also arch_spin_unlock().
131
*/
132
static __inline__ void
133
__clear_bit_unlock(int nr, void *addr)
134
{
135
__u32 * const m = (__u32 *) addr + (nr >> 5);
136
__u32 const new = *m & ~(1 << (nr & 31));
137
138
ia64_st4_rel_nta(m, new);
139
}
140
141
/**
142
* __clear_bit - Clears a bit in memory (non-atomic version)
143
* @nr: the bit to clear
144
* @addr: the address to start counting from
145
*
146
* Unlike clear_bit(), this function is non-atomic and may be reordered.
147
* If it's called on the same region of memory simultaneously, the effect
148
* may be that only one operation succeeds.
149
*/
150
static __inline__ void
151
__clear_bit (int nr, volatile void *addr)
152
{
153
*((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31));
154
}
155
156
/**
157
* change_bit - Toggle a bit in memory
158
* @nr: Bit to toggle
159
* @addr: Address to start counting from
160
*
161
* change_bit() is atomic and may not be reordered.
162
* Note that @nr may be almost arbitrarily large; this function is not
163
* restricted to acting on a single-word quantity.
164
*/
165
static __inline__ void
166
change_bit (int nr, volatile void *addr)
167
{
168
__u32 bit, old, new;
169
volatile __u32 *m;
170
CMPXCHG_BUGCHECK_DECL
171
172
m = (volatile __u32 *) addr + (nr >> 5);
173
bit = (1 << (nr & 31));
174
do {
175
CMPXCHG_BUGCHECK(m);
176
old = *m;
177
new = old ^ bit;
178
} while (cmpxchg_acq(m, old, new) != old);
179
}
180
181
/**
182
* __change_bit - Toggle a bit in memory
183
* @nr: the bit to toggle
184
* @addr: the address to start counting from
185
*
186
* Unlike change_bit(), this function is non-atomic and may be reordered.
187
* If it's called on the same region of memory simultaneously, the effect
188
* may be that only one operation succeeds.
189
*/
190
static __inline__ void
191
__change_bit (int nr, volatile void *addr)
192
{
193
*((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
194
}
195
196
/**
197
* test_and_set_bit - Set a bit and return its old value
198
* @nr: Bit to set
199
* @addr: Address to count from
200
*
201
* This operation is atomic and cannot be reordered.
202
* It also implies the acquisition side of the memory barrier.
203
*/
204
static __inline__ int
205
test_and_set_bit (int nr, volatile void *addr)
206
{
207
__u32 bit, old, new;
208
volatile __u32 *m;
209
CMPXCHG_BUGCHECK_DECL
210
211
m = (volatile __u32 *) addr + (nr >> 5);
212
bit = 1 << (nr & 31);
213
do {
214
CMPXCHG_BUGCHECK(m);
215
old = *m;
216
new = old | bit;
217
} while (cmpxchg_acq(m, old, new) != old);
218
return (old & bit) != 0;
219
}
220
221
/**
222
* test_and_set_bit_lock - Set a bit and return its old value for lock
223
* @nr: Bit to set
224
* @addr: Address to count from
225
*
226
* This is the same as test_and_set_bit on ia64
227
*/
228
#define test_and_set_bit_lock test_and_set_bit
229
230
/**
231
* __test_and_set_bit - Set a bit and return its old value
232
* @nr: Bit to set
233
* @addr: Address to count from
234
*
235
* This operation is non-atomic and can be reordered.
236
* If two examples of this operation race, one can appear to succeed
237
* but actually fail. You must protect multiple accesses with a lock.
238
*/
239
static __inline__ int
240
__test_and_set_bit (int nr, volatile void *addr)
241
{
242
__u32 *p = (__u32 *) addr + (nr >> 5);
243
__u32 m = 1 << (nr & 31);
244
int oldbitset = (*p & m) != 0;
245
246
*p |= m;
247
return oldbitset;
248
}
249
250
/**
251
* test_and_clear_bit - Clear a bit and return its old value
252
* @nr: Bit to clear
253
* @addr: Address to count from
254
*
255
* This operation is atomic and cannot be reordered.
256
* It also implies the acquisition side of the memory barrier.
257
*/
258
static __inline__ int
259
test_and_clear_bit (int nr, volatile void *addr)
260
{
261
__u32 mask, old, new;
262
volatile __u32 *m;
263
CMPXCHG_BUGCHECK_DECL
264
265
m = (volatile __u32 *) addr + (nr >> 5);
266
mask = ~(1 << (nr & 31));
267
do {
268
CMPXCHG_BUGCHECK(m);
269
old = *m;
270
new = old & mask;
271
} while (cmpxchg_acq(m, old, new) != old);
272
return (old & ~mask) != 0;
273
}
274
275
/**
276
* __test_and_clear_bit - Clear a bit and return its old value
277
* @nr: Bit to clear
278
* @addr: Address to count from
279
*
280
* This operation is non-atomic and can be reordered.
281
* If two examples of this operation race, one can appear to succeed
282
* but actually fail. You must protect multiple accesses with a lock.
283
*/
284
static __inline__ int
285
__test_and_clear_bit(int nr, volatile void * addr)
286
{
287
__u32 *p = (__u32 *) addr + (nr >> 5);
288
__u32 m = 1 << (nr & 31);
289
int oldbitset = (*p & m) != 0;
290
291
*p &= ~m;
292
return oldbitset;
293
}
294
295
/**
296
* test_and_change_bit - Change a bit and return its old value
297
* @nr: Bit to change
298
* @addr: Address to count from
299
*
300
* This operation is atomic and cannot be reordered.
301
* It also implies the acquisition side of the memory barrier.
302
*/
303
static __inline__ int
304
test_and_change_bit (int nr, volatile void *addr)
305
{
306
__u32 bit, old, new;
307
volatile __u32 *m;
308
CMPXCHG_BUGCHECK_DECL
309
310
m = (volatile __u32 *) addr + (nr >> 5);
311
bit = (1 << (nr & 31));
312
do {
313
CMPXCHG_BUGCHECK(m);
314
old = *m;
315
new = old ^ bit;
316
} while (cmpxchg_acq(m, old, new) != old);
317
return (old & bit) != 0;
318
}
319
320
/**
321
* __test_and_change_bit - Change a bit and return its old value
322
* @nr: Bit to change
323
* @addr: Address to count from
324
*
325
* This operation is non-atomic and can be reordered.
326
*/
327
static __inline__ int
328
__test_and_change_bit (int nr, void *addr)
329
{
330
__u32 old, bit = (1 << (nr & 31));
331
__u32 *m = (__u32 *) addr + (nr >> 5);
332
333
old = *m;
334
*m = old ^ bit;
335
return (old & bit) != 0;
336
}
337
338
static __inline__ int
339
test_bit (int nr, const volatile void *addr)
340
{
341
return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
342
}
343
344
/**
345
* ffz - find the first zero bit in a long word
346
* @x: The long word to find the bit in
347
*
348
* Returns the bit-number (0..63) of the first (least significant) zero bit.
349
* Undefined if no zero exists, so code should check against ~0UL first...
350
*/
351
static inline unsigned long
352
ffz (unsigned long x)
353
{
354
unsigned long result;
355
356
result = ia64_popcnt(x & (~x - 1));
357
return result;
358
}
359
360
/**
361
* __ffs - find first bit in word.
362
* @x: The word to search
363
*
364
* Undefined if no bit exists, so code should check against 0 first.
365
*/
366
static __inline__ unsigned long
367
__ffs (unsigned long x)
368
{
369
unsigned long result;
370
371
result = ia64_popcnt((x-1) & ~x);
372
return result;
373
}
374
375
#ifdef __KERNEL__
376
377
/*
378
* Return bit number of last (most-significant) bit set. Undefined
379
* for x==0. Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
380
*/
381
static inline unsigned long
382
ia64_fls (unsigned long x)
383
{
384
long double d = x;
385
long exp;
386
387
exp = ia64_getf_exp(d);
388
return exp - 0xffff;
389
}
390
391
/*
392
* Find the last (most significant) bit set. Returns 0 for x==0 and
393
* bits are numbered from 1..32 (e.g., fls(9) == 4).
394
*/
395
static inline int
396
fls (int t)
397
{
398
unsigned long x = t & 0xffffffffu;
399
400
if (!x)
401
return 0;
402
x |= x >> 1;
403
x |= x >> 2;
404
x |= x >> 4;
405
x |= x >> 8;
406
x |= x >> 16;
407
return ia64_popcnt(x);
408
}
409
410
/*
411
* Find the last (most significant) bit set. Undefined for x==0.
412
* Bits are numbered from 0..63 (e.g., __fls(9) == 3).
413
*/
414
static inline unsigned long
415
__fls (unsigned long x)
416
{
417
x |= x >> 1;
418
x |= x >> 2;
419
x |= x >> 4;
420
x |= x >> 8;
421
x |= x >> 16;
422
x |= x >> 32;
423
return ia64_popcnt(x) - 1;
424
}
425
426
#include <asm-generic/bitops/fls64.h>
427
428
/*
429
* ffs: find first bit set. This is defined the same way as the libc and
430
* compiler builtin ffs routines, therefore differs in spirit from the above
431
* ffz (man ffs): it operates on "int" values only and the result value is the
432
* bit number + 1. ffs(0) is defined to return zero.
433
*/
434
#define ffs(x) __builtin_ffs(x)
435
436
/*
437
* hweightN: returns the hamming weight (i.e. the number
438
* of bits set) of a N-bit word
439
*/
440
static __inline__ unsigned long __arch_hweight64(unsigned long x)
441
{
442
unsigned long result;
443
result = ia64_popcnt(x);
444
return result;
445
}
446
447
#define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful))
448
#define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful))
449
#define __arch_hweight8(x) ((unsigned int) __arch_hweight64((x) & 0xfful))
450
451
#include <asm-generic/bitops/const_hweight.h>
452
453
#endif /* __KERNEL__ */
454
455
#include <asm-generic/bitops/find.h>
456
457
#ifdef __KERNEL__
458
459
#include <asm-generic/bitops/le.h>
460
461
#define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a)
462
#define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a)
463
464
#include <asm-generic/bitops/sched.h>
465
466
#endif /* __KERNEL__ */
467
468
#endif /* _ASM_IA64_BITOPS_H */
469
470