Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/kernel/mca.c
10817 views
1
/*
2
* File: mca.c
3
* Purpose: Generic MCA handling layer
4
*
5
* Copyright (C) 2003 Hewlett-Packard Co
6
* David Mosberger-Tang <[email protected]>
7
*
8
* Copyright (C) 2002 Dell Inc.
9
* Copyright (C) Matt Domsch <[email protected]>
10
*
11
* Copyright (C) 2002 Intel
12
* Copyright (C) Jenna Hall <[email protected]>
13
*
14
* Copyright (C) 2001 Intel
15
* Copyright (C) Fred Lewis <[email protected]>
16
*
17
* Copyright (C) 2000 Intel
18
* Copyright (C) Chuck Fleckenstein <[email protected]>
19
*
20
* Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21
* Copyright (C) Vijay Chander <[email protected]>
22
*
23
* Copyright (C) 2006 FUJITSU LIMITED
24
* Copyright (C) Hidetoshi Seto <[email protected]>
25
*
26
* 2000-03-29 Chuck Fleckenstein <[email protected]>
27
* Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28
* added min save state dump, added INIT handler.
29
*
30
* 2001-01-03 Fred Lewis <[email protected]>
31
* Added setup of CMCI and CPEI IRQs, logging of corrected platform
32
* errors, completed code for logging of corrected & uncorrected
33
* machine check errors, and updated for conformance with Nov. 2000
34
* revision of the SAL 3.0 spec.
35
*
36
* 2002-01-04 Jenna Hall <[email protected]>
37
* Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38
* set SAL default return values, changed error record structure to
39
* linked list, added init call to sal_get_state_info_size().
40
*
41
* 2002-03-25 Matt Domsch <[email protected]>
42
* GUID cleanups.
43
*
44
* 2003-04-15 David Mosberger-Tang <[email protected]>
45
* Added INIT backtrace support.
46
*
47
* 2003-12-08 Keith Owens <[email protected]>
48
* smp_call_function() must not be called from interrupt context
49
* (can deadlock on tasklist_lock).
50
* Use keventd to call smp_call_function().
51
*
52
* 2004-02-01 Keith Owens <[email protected]>
53
* Avoid deadlock when using printk() for MCA and INIT records.
54
* Delete all record printing code, moved to salinfo_decode in user
55
* space. Mark variables and functions static where possible.
56
* Delete dead variables and functions. Reorder to remove the need
57
* for forward declarations and to consolidate related code.
58
*
59
* 2005-08-12 Keith Owens <[email protected]>
60
* Convert MCA/INIT handlers to use per event stacks and SAL/OS
61
* state.
62
*
63
* 2005-10-07 Keith Owens <[email protected]>
64
* Add notify_die() hooks.
65
*
66
* 2006-09-15 Hidetoshi Seto <[email protected]>
67
* Add printing support for MCA/INIT.
68
*
69
* 2007-04-27 Russ Anderson <[email protected]>
70
* Support multiple cpus going through OS_MCA in the same event.
71
*/
72
#include <linux/jiffies.h>
73
#include <linux/types.h>
74
#include <linux/init.h>
75
#include <linux/sched.h>
76
#include <linux/interrupt.h>
77
#include <linux/irq.h>
78
#include <linux/bootmem.h>
79
#include <linux/acpi.h>
80
#include <linux/timer.h>
81
#include <linux/module.h>
82
#include <linux/kernel.h>
83
#include <linux/smp.h>
84
#include <linux/workqueue.h>
85
#include <linux/cpumask.h>
86
#include <linux/kdebug.h>
87
#include <linux/cpu.h>
88
#include <linux/gfp.h>
89
90
#include <asm/delay.h>
91
#include <asm/machvec.h>
92
#include <asm/meminit.h>
93
#include <asm/page.h>
94
#include <asm/ptrace.h>
95
#include <asm/system.h>
96
#include <asm/sal.h>
97
#include <asm/mca.h>
98
#include <asm/kexec.h>
99
100
#include <asm/irq.h>
101
#include <asm/hw_irq.h>
102
#include <asm/tlb.h>
103
104
#include "mca_drv.h"
105
#include "entry.h"
106
107
#if defined(IA64_MCA_DEBUG_INFO)
108
# define IA64_MCA_DEBUG(fmt...) printk(fmt)
109
#else
110
# define IA64_MCA_DEBUG(fmt...)
111
#endif
112
113
#define NOTIFY_INIT(event, regs, arg, spin) \
114
do { \
115
if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
116
== NOTIFY_STOP) && ((spin) == 1)) \
117
ia64_mca_spin(__func__); \
118
} while (0)
119
120
#define NOTIFY_MCA(event, regs, arg, spin) \
121
do { \
122
if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
123
== NOTIFY_STOP) && ((spin) == 1)) \
124
ia64_mca_spin(__func__); \
125
} while (0)
126
127
/* Used by mca_asm.S */
128
DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
129
DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
130
DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
131
DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
132
DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
133
134
unsigned long __per_cpu_mca[NR_CPUS];
135
136
/* In mca_asm.S */
137
extern void ia64_os_init_dispatch_monarch (void);
138
extern void ia64_os_init_dispatch_slave (void);
139
140
static int monarch_cpu = -1;
141
142
static ia64_mc_info_t ia64_mc_info;
143
144
#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
145
#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
146
#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
147
#define CPE_HISTORY_LENGTH 5
148
#define CMC_HISTORY_LENGTH 5
149
150
#ifdef CONFIG_ACPI
151
static struct timer_list cpe_poll_timer;
152
#endif
153
static struct timer_list cmc_poll_timer;
154
/*
155
* This variable tells whether we are currently in polling mode.
156
* Start with this in the wrong state so we won't play w/ timers
157
* before the system is ready.
158
*/
159
static int cmc_polling_enabled = 1;
160
161
/*
162
* Clearing this variable prevents CPE polling from getting activated
163
* in mca_late_init. Use it if your system doesn't provide a CPEI,
164
* but encounters problems retrieving CPE logs. This should only be
165
* necessary for debugging.
166
*/
167
static int cpe_poll_enabled = 1;
168
169
extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
170
171
static int mca_init __initdata;
172
173
/*
174
* limited & delayed printing support for MCA/INIT handler
175
*/
176
177
#define mprintk(fmt...) ia64_mca_printk(fmt)
178
179
#define MLOGBUF_SIZE (512+256*NR_CPUS)
180
#define MLOGBUF_MSGMAX 256
181
static char mlogbuf[MLOGBUF_SIZE];
182
static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
183
static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
184
static unsigned long mlogbuf_start;
185
static unsigned long mlogbuf_end;
186
static unsigned int mlogbuf_finished = 0;
187
static unsigned long mlogbuf_timestamp = 0;
188
189
static int loglevel_save = -1;
190
#define BREAK_LOGLEVEL(__console_loglevel) \
191
oops_in_progress = 1; \
192
if (loglevel_save < 0) \
193
loglevel_save = __console_loglevel; \
194
__console_loglevel = 15;
195
196
#define RESTORE_LOGLEVEL(__console_loglevel) \
197
if (loglevel_save >= 0) { \
198
__console_loglevel = loglevel_save; \
199
loglevel_save = -1; \
200
} \
201
mlogbuf_finished = 0; \
202
oops_in_progress = 0;
203
204
/*
205
* Push messages into buffer, print them later if not urgent.
206
*/
207
void ia64_mca_printk(const char *fmt, ...)
208
{
209
va_list args;
210
int printed_len;
211
char temp_buf[MLOGBUF_MSGMAX];
212
char *p;
213
214
va_start(args, fmt);
215
printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
216
va_end(args);
217
218
/* Copy the output into mlogbuf */
219
if (oops_in_progress) {
220
/* mlogbuf was abandoned, use printk directly instead. */
221
printk(temp_buf);
222
} else {
223
spin_lock(&mlogbuf_wlock);
224
for (p = temp_buf; *p; p++) {
225
unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
226
if (next != mlogbuf_start) {
227
mlogbuf[mlogbuf_end] = *p;
228
mlogbuf_end = next;
229
} else {
230
/* buffer full */
231
break;
232
}
233
}
234
mlogbuf[mlogbuf_end] = '\0';
235
spin_unlock(&mlogbuf_wlock);
236
}
237
}
238
EXPORT_SYMBOL(ia64_mca_printk);
239
240
/*
241
* Print buffered messages.
242
* NOTE: call this after returning normal context. (ex. from salinfod)
243
*/
244
void ia64_mlogbuf_dump(void)
245
{
246
char temp_buf[MLOGBUF_MSGMAX];
247
char *p;
248
unsigned long index;
249
unsigned long flags;
250
unsigned int printed_len;
251
252
/* Get output from mlogbuf */
253
while (mlogbuf_start != mlogbuf_end) {
254
temp_buf[0] = '\0';
255
p = temp_buf;
256
printed_len = 0;
257
258
spin_lock_irqsave(&mlogbuf_rlock, flags);
259
260
index = mlogbuf_start;
261
while (index != mlogbuf_end) {
262
*p = mlogbuf[index];
263
index = (index + 1) % MLOGBUF_SIZE;
264
if (!*p)
265
break;
266
p++;
267
if (++printed_len >= MLOGBUF_MSGMAX - 1)
268
break;
269
}
270
*p = '\0';
271
if (temp_buf[0])
272
printk(temp_buf);
273
mlogbuf_start = index;
274
275
mlogbuf_timestamp = 0;
276
spin_unlock_irqrestore(&mlogbuf_rlock, flags);
277
}
278
}
279
EXPORT_SYMBOL(ia64_mlogbuf_dump);
280
281
/*
282
* Call this if system is going to down or if immediate flushing messages to
283
* console is required. (ex. recovery was failed, crash dump is going to be
284
* invoked, long-wait rendezvous etc.)
285
* NOTE: this should be called from monarch.
286
*/
287
static void ia64_mlogbuf_finish(int wait)
288
{
289
BREAK_LOGLEVEL(console_loglevel);
290
291
spin_lock_init(&mlogbuf_rlock);
292
ia64_mlogbuf_dump();
293
printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
294
"MCA/INIT might be dodgy or fail.\n");
295
296
if (!wait)
297
return;
298
299
/* wait for console */
300
printk("Delaying for 5 seconds...\n");
301
udelay(5*1000000);
302
303
mlogbuf_finished = 1;
304
}
305
306
/*
307
* Print buffered messages from INIT context.
308
*/
309
static void ia64_mlogbuf_dump_from_init(void)
310
{
311
if (mlogbuf_finished)
312
return;
313
314
if (mlogbuf_timestamp &&
315
time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
316
printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
317
" and the system seems to be messed up.\n");
318
ia64_mlogbuf_finish(0);
319
return;
320
}
321
322
if (!spin_trylock(&mlogbuf_rlock)) {
323
printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
324
"Generated messages other than stack dump will be "
325
"buffered to mlogbuf and will be printed later.\n");
326
printk(KERN_ERR "INIT: If messages would not printed after "
327
"this INIT, wait 30sec and assert INIT again.\n");
328
if (!mlogbuf_timestamp)
329
mlogbuf_timestamp = jiffies;
330
return;
331
}
332
spin_unlock(&mlogbuf_rlock);
333
ia64_mlogbuf_dump();
334
}
335
336
static void inline
337
ia64_mca_spin(const char *func)
338
{
339
if (monarch_cpu == smp_processor_id())
340
ia64_mlogbuf_finish(0);
341
mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
342
while (1)
343
cpu_relax();
344
}
345
/*
346
* IA64_MCA log support
347
*/
348
#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
349
#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
350
351
typedef struct ia64_state_log_s
352
{
353
spinlock_t isl_lock;
354
int isl_index;
355
unsigned long isl_count;
356
ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
357
} ia64_state_log_t;
358
359
static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
360
361
#define IA64_LOG_ALLOCATE(it, size) \
362
{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
363
(ia64_err_rec_t *)alloc_bootmem(size); \
364
ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
365
(ia64_err_rec_t *)alloc_bootmem(size);}
366
#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
367
#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
368
#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
369
#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
370
#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
371
#define IA64_LOG_INDEX_INC(it) \
372
{ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
373
ia64_state_log[it].isl_count++;}
374
#define IA64_LOG_INDEX_DEC(it) \
375
ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
376
#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
377
#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
378
#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
379
380
/*
381
* ia64_log_init
382
* Reset the OS ia64 log buffer
383
* Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
384
* Outputs : None
385
*/
386
static void __init
387
ia64_log_init(int sal_info_type)
388
{
389
u64 max_size = 0;
390
391
IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
392
IA64_LOG_LOCK_INIT(sal_info_type);
393
394
// SAL will tell us the maximum size of any error record of this type
395
max_size = ia64_sal_get_state_info_size(sal_info_type);
396
if (!max_size)
397
/* alloc_bootmem() doesn't like zero-sized allocations! */
398
return;
399
400
// set up OS data structures to hold error info
401
IA64_LOG_ALLOCATE(sal_info_type, max_size);
402
memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
403
memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
404
}
405
406
/*
407
* ia64_log_get
408
*
409
* Get the current MCA log from SAL and copy it into the OS log buffer.
410
*
411
* Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
412
* irq_safe whether you can use printk at this point
413
* Outputs : size (total record length)
414
* *buffer (ptr to error record)
415
*
416
*/
417
static u64
418
ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
419
{
420
sal_log_record_header_t *log_buffer;
421
u64 total_len = 0;
422
unsigned long s;
423
424
IA64_LOG_LOCK(sal_info_type);
425
426
/* Get the process state information */
427
log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
428
429
total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
430
431
if (total_len) {
432
IA64_LOG_INDEX_INC(sal_info_type);
433
IA64_LOG_UNLOCK(sal_info_type);
434
if (irq_safe) {
435
IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
436
__func__, sal_info_type, total_len);
437
}
438
*buffer = (u8 *) log_buffer;
439
return total_len;
440
} else {
441
IA64_LOG_UNLOCK(sal_info_type);
442
return 0;
443
}
444
}
445
446
/*
447
* ia64_mca_log_sal_error_record
448
*
449
* This function retrieves a specified error record type from SAL
450
* and wakes up any processes waiting for error records.
451
*
452
* Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
453
* FIXME: remove MCA and irq_safe.
454
*/
455
static void
456
ia64_mca_log_sal_error_record(int sal_info_type)
457
{
458
u8 *buffer;
459
sal_log_record_header_t *rh;
460
u64 size;
461
int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
462
#ifdef IA64_MCA_DEBUG_INFO
463
static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
464
#endif
465
466
size = ia64_log_get(sal_info_type, &buffer, irq_safe);
467
if (!size)
468
return;
469
470
salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
471
472
if (irq_safe)
473
IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
474
smp_processor_id(),
475
sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
476
477
/* Clear logs from corrected errors in case there's no user-level logger */
478
rh = (sal_log_record_header_t *)buffer;
479
if (rh->severity == sal_log_severity_corrected)
480
ia64_sal_clear_state_info(sal_info_type);
481
}
482
483
/*
484
* search_mca_table
485
* See if the MCA surfaced in an instruction range
486
* that has been tagged as recoverable.
487
*
488
* Inputs
489
* first First address range to check
490
* last Last address range to check
491
* ip Instruction pointer, address we are looking for
492
*
493
* Return value:
494
* 1 on Success (in the table)/ 0 on Failure (not in the table)
495
*/
496
int
497
search_mca_table (const struct mca_table_entry *first,
498
const struct mca_table_entry *last,
499
unsigned long ip)
500
{
501
const struct mca_table_entry *curr;
502
u64 curr_start, curr_end;
503
504
curr = first;
505
while (curr <= last) {
506
curr_start = (u64) &curr->start_addr + curr->start_addr;
507
curr_end = (u64) &curr->end_addr + curr->end_addr;
508
509
if ((ip >= curr_start) && (ip <= curr_end)) {
510
return 1;
511
}
512
curr++;
513
}
514
return 0;
515
}
516
517
/* Given an address, look for it in the mca tables. */
518
int mca_recover_range(unsigned long addr)
519
{
520
extern struct mca_table_entry __start___mca_table[];
521
extern struct mca_table_entry __stop___mca_table[];
522
523
return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
524
}
525
EXPORT_SYMBOL_GPL(mca_recover_range);
526
527
#ifdef CONFIG_ACPI
528
529
int cpe_vector = -1;
530
int ia64_cpe_irq = -1;
531
532
static irqreturn_t
533
ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
534
{
535
static unsigned long cpe_history[CPE_HISTORY_LENGTH];
536
static int index;
537
static DEFINE_SPINLOCK(cpe_history_lock);
538
539
IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
540
__func__, cpe_irq, smp_processor_id());
541
542
/* SAL spec states this should run w/ interrupts enabled */
543
local_irq_enable();
544
545
spin_lock(&cpe_history_lock);
546
if (!cpe_poll_enabled && cpe_vector >= 0) {
547
548
int i, count = 1; /* we know 1 happened now */
549
unsigned long now = jiffies;
550
551
for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
552
if (now - cpe_history[i] <= HZ)
553
count++;
554
}
555
556
IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
557
if (count >= CPE_HISTORY_LENGTH) {
558
559
cpe_poll_enabled = 1;
560
spin_unlock(&cpe_history_lock);
561
disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
562
563
/*
564
* Corrected errors will still be corrected, but
565
* make sure there's a log somewhere that indicates
566
* something is generating more than we can handle.
567
*/
568
printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
569
570
mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
571
572
/* lock already released, get out now */
573
goto out;
574
} else {
575
cpe_history[index++] = now;
576
if (index == CPE_HISTORY_LENGTH)
577
index = 0;
578
}
579
}
580
spin_unlock(&cpe_history_lock);
581
out:
582
/* Get the CPE error record and log it */
583
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
584
585
local_irq_disable();
586
587
return IRQ_HANDLED;
588
}
589
590
#endif /* CONFIG_ACPI */
591
592
#ifdef CONFIG_ACPI
593
/*
594
* ia64_mca_register_cpev
595
*
596
* Register the corrected platform error vector with SAL.
597
*
598
* Inputs
599
* cpev Corrected Platform Error Vector number
600
*
601
* Outputs
602
* None
603
*/
604
void
605
ia64_mca_register_cpev (int cpev)
606
{
607
/* Register the CPE interrupt vector with SAL */
608
struct ia64_sal_retval isrv;
609
610
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
611
if (isrv.status) {
612
printk(KERN_ERR "Failed to register Corrected Platform "
613
"Error interrupt vector with SAL (status %ld)\n", isrv.status);
614
return;
615
}
616
617
IA64_MCA_DEBUG("%s: corrected platform error "
618
"vector %#x registered\n", __func__, cpev);
619
}
620
#endif /* CONFIG_ACPI */
621
622
/*
623
* ia64_mca_cmc_vector_setup
624
*
625
* Setup the corrected machine check vector register in the processor.
626
* (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
627
* This function is invoked on a per-processor basis.
628
*
629
* Inputs
630
* None
631
*
632
* Outputs
633
* None
634
*/
635
void __cpuinit
636
ia64_mca_cmc_vector_setup (void)
637
{
638
cmcv_reg_t cmcv;
639
640
cmcv.cmcv_regval = 0;
641
cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
642
cmcv.cmcv_vector = IA64_CMC_VECTOR;
643
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
644
645
IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
646
__func__, smp_processor_id(), IA64_CMC_VECTOR);
647
648
IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
649
__func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
650
}
651
652
/*
653
* ia64_mca_cmc_vector_disable
654
*
655
* Mask the corrected machine check vector register in the processor.
656
* This function is invoked on a per-processor basis.
657
*
658
* Inputs
659
* dummy(unused)
660
*
661
* Outputs
662
* None
663
*/
664
static void
665
ia64_mca_cmc_vector_disable (void *dummy)
666
{
667
cmcv_reg_t cmcv;
668
669
cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
670
671
cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
672
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
673
674
IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
675
__func__, smp_processor_id(), cmcv.cmcv_vector);
676
}
677
678
/*
679
* ia64_mca_cmc_vector_enable
680
*
681
* Unmask the corrected machine check vector register in the processor.
682
* This function is invoked on a per-processor basis.
683
*
684
* Inputs
685
* dummy(unused)
686
*
687
* Outputs
688
* None
689
*/
690
static void
691
ia64_mca_cmc_vector_enable (void *dummy)
692
{
693
cmcv_reg_t cmcv;
694
695
cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
696
697
cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
698
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
699
700
IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
701
__func__, smp_processor_id(), cmcv.cmcv_vector);
702
}
703
704
/*
705
* ia64_mca_cmc_vector_disable_keventd
706
*
707
* Called via keventd (smp_call_function() is not safe in interrupt context) to
708
* disable the cmc interrupt vector.
709
*/
710
static void
711
ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
712
{
713
on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
714
}
715
716
/*
717
* ia64_mca_cmc_vector_enable_keventd
718
*
719
* Called via keventd (smp_call_function() is not safe in interrupt context) to
720
* enable the cmc interrupt vector.
721
*/
722
static void
723
ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
724
{
725
on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
726
}
727
728
/*
729
* ia64_mca_wakeup
730
*
731
* Send an inter-cpu interrupt to wake-up a particular cpu.
732
*
733
* Inputs : cpuid
734
* Outputs : None
735
*/
736
static void
737
ia64_mca_wakeup(int cpu)
738
{
739
platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
740
}
741
742
/*
743
* ia64_mca_wakeup_all
744
*
745
* Wakeup all the slave cpus which have rendez'ed previously.
746
*
747
* Inputs : None
748
* Outputs : None
749
*/
750
static void
751
ia64_mca_wakeup_all(void)
752
{
753
int cpu;
754
755
/* Clear the Rendez checkin flag for all cpus */
756
for_each_online_cpu(cpu) {
757
if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
758
ia64_mca_wakeup(cpu);
759
}
760
761
}
762
763
/*
764
* ia64_mca_rendez_interrupt_handler
765
*
766
* This is handler used to put slave processors into spinloop
767
* while the monarch processor does the mca handling and later
768
* wake each slave up once the monarch is done. The state
769
* IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
770
* in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
771
* the cpu has come out of OS rendezvous.
772
*
773
* Inputs : None
774
* Outputs : None
775
*/
776
static irqreturn_t
777
ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
778
{
779
unsigned long flags;
780
int cpu = smp_processor_id();
781
struct ia64_mca_notify_die nd =
782
{ .sos = NULL, .monarch_cpu = &monarch_cpu };
783
784
/* Mask all interrupts */
785
local_irq_save(flags);
786
787
NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
788
789
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
790
/* Register with the SAL monarch that the slave has
791
* reached SAL
792
*/
793
ia64_sal_mc_rendez();
794
795
NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
796
797
/* Wait for the monarch cpu to exit. */
798
while (monarch_cpu != -1)
799
cpu_relax(); /* spin until monarch leaves */
800
801
NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
802
803
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
804
/* Enable all interrupts */
805
local_irq_restore(flags);
806
return IRQ_HANDLED;
807
}
808
809
/*
810
* ia64_mca_wakeup_int_handler
811
*
812
* The interrupt handler for processing the inter-cpu interrupt to the
813
* slave cpu which was spinning in the rendez loop.
814
* Since this spinning is done by turning off the interrupts and
815
* polling on the wakeup-interrupt bit in the IRR, there is
816
* nothing useful to be done in the handler.
817
*
818
* Inputs : wakeup_irq (Wakeup-interrupt bit)
819
* arg (Interrupt handler specific argument)
820
* Outputs : None
821
*
822
*/
823
static irqreturn_t
824
ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
825
{
826
return IRQ_HANDLED;
827
}
828
829
/* Function pointer for extra MCA recovery */
830
int (*ia64_mca_ucmc_extension)
831
(void*,struct ia64_sal_os_state*)
832
= NULL;
833
834
int
835
ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
836
{
837
if (ia64_mca_ucmc_extension)
838
return 1;
839
840
ia64_mca_ucmc_extension = fn;
841
return 0;
842
}
843
844
void
845
ia64_unreg_MCA_extension(void)
846
{
847
if (ia64_mca_ucmc_extension)
848
ia64_mca_ucmc_extension = NULL;
849
}
850
851
EXPORT_SYMBOL(ia64_reg_MCA_extension);
852
EXPORT_SYMBOL(ia64_unreg_MCA_extension);
853
854
855
static inline void
856
copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
857
{
858
u64 fslot, tslot, nat;
859
*tr = *fr;
860
fslot = ((unsigned long)fr >> 3) & 63;
861
tslot = ((unsigned long)tr >> 3) & 63;
862
*tnat &= ~(1UL << tslot);
863
nat = (fnat >> fslot) & 1;
864
*tnat |= (nat << tslot);
865
}
866
867
/* Change the comm field on the MCA/INT task to include the pid that
868
* was interrupted, it makes for easier debugging. If that pid was 0
869
* (swapper or nested MCA/INIT) then use the start of the previous comm
870
* field suffixed with its cpu.
871
*/
872
873
static void
874
ia64_mca_modify_comm(const struct task_struct *previous_current)
875
{
876
char *p, comm[sizeof(current->comm)];
877
if (previous_current->pid)
878
snprintf(comm, sizeof(comm), "%s %d",
879
current->comm, previous_current->pid);
880
else {
881
int l;
882
if ((p = strchr(previous_current->comm, ' ')))
883
l = p - previous_current->comm;
884
else
885
l = strlen(previous_current->comm);
886
snprintf(comm, sizeof(comm), "%s %*s %d",
887
current->comm, l, previous_current->comm,
888
task_thread_info(previous_current)->cpu);
889
}
890
memcpy(current->comm, comm, sizeof(current->comm));
891
}
892
893
static void
894
finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
895
unsigned long *nat)
896
{
897
const pal_min_state_area_t *ms = sos->pal_min_state;
898
const u64 *bank;
899
900
/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
901
* pmsa_{xip,xpsr,xfs}
902
*/
903
if (ia64_psr(regs)->ic) {
904
regs->cr_iip = ms->pmsa_iip;
905
regs->cr_ipsr = ms->pmsa_ipsr;
906
regs->cr_ifs = ms->pmsa_ifs;
907
} else {
908
regs->cr_iip = ms->pmsa_xip;
909
regs->cr_ipsr = ms->pmsa_xpsr;
910
regs->cr_ifs = ms->pmsa_xfs;
911
912
sos->iip = ms->pmsa_iip;
913
sos->ipsr = ms->pmsa_ipsr;
914
sos->ifs = ms->pmsa_ifs;
915
}
916
regs->pr = ms->pmsa_pr;
917
regs->b0 = ms->pmsa_br0;
918
regs->ar_rsc = ms->pmsa_rsc;
919
copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
920
copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
921
copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
922
copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
923
copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
924
copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
925
copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
926
copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
927
copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
928
copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
929
copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
930
if (ia64_psr(regs)->bn)
931
bank = ms->pmsa_bank1_gr;
932
else
933
bank = ms->pmsa_bank0_gr;
934
copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
935
copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
936
copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
937
copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
938
copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
939
copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
940
copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
941
copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
942
copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
943
copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
944
copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
945
copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
946
copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
947
copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
948
copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
949
copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
950
}
951
952
/* On entry to this routine, we are running on the per cpu stack, see
953
* mca_asm.h. The original stack has not been touched by this event. Some of
954
* the original stack's registers will be in the RBS on this stack. This stack
955
* also contains a partial pt_regs and switch_stack, the rest of the data is in
956
* PAL minstate.
957
*
958
* The first thing to do is modify the original stack to look like a blocked
959
* task so we can run backtrace on the original task. Also mark the per cpu
960
* stack as current to ensure that we use the correct task state, it also means
961
* that we can do backtrace on the MCA/INIT handler code itself.
962
*/
963
964
static struct task_struct *
965
ia64_mca_modify_original_stack(struct pt_regs *regs,
966
const struct switch_stack *sw,
967
struct ia64_sal_os_state *sos,
968
const char *type)
969
{
970
char *p;
971
ia64_va va;
972
extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
973
const pal_min_state_area_t *ms = sos->pal_min_state;
974
struct task_struct *previous_current;
975
struct pt_regs *old_regs;
976
struct switch_stack *old_sw;
977
unsigned size = sizeof(struct pt_regs) +
978
sizeof(struct switch_stack) + 16;
979
unsigned long *old_bspstore, *old_bsp;
980
unsigned long *new_bspstore, *new_bsp;
981
unsigned long old_unat, old_rnat, new_rnat, nat;
982
u64 slots, loadrs = regs->loadrs;
983
u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
984
u64 ar_bspstore = regs->ar_bspstore;
985
u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
986
const char *msg;
987
int cpu = smp_processor_id();
988
989
previous_current = curr_task(cpu);
990
set_curr_task(cpu, current);
991
if ((p = strchr(current->comm, ' ')))
992
*p = '\0';
993
994
/* Best effort attempt to cope with MCA/INIT delivered while in
995
* physical mode.
996
*/
997
regs->cr_ipsr = ms->pmsa_ipsr;
998
if (ia64_psr(regs)->dt == 0) {
999
va.l = r12;
1000
if (va.f.reg == 0) {
1001
va.f.reg = 7;
1002
r12 = va.l;
1003
}
1004
va.l = r13;
1005
if (va.f.reg == 0) {
1006
va.f.reg = 7;
1007
r13 = va.l;
1008
}
1009
}
1010
if (ia64_psr(regs)->rt == 0) {
1011
va.l = ar_bspstore;
1012
if (va.f.reg == 0) {
1013
va.f.reg = 7;
1014
ar_bspstore = va.l;
1015
}
1016
va.l = ar_bsp;
1017
if (va.f.reg == 0) {
1018
va.f.reg = 7;
1019
ar_bsp = va.l;
1020
}
1021
}
1022
1023
/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1024
* have been copied to the old stack, the old stack may fail the
1025
* validation tests below. So ia64_old_stack() must restore the dirty
1026
* registers from the new stack. The old and new bspstore probably
1027
* have different alignments, so loadrs calculated on the old bsp
1028
* cannot be used to restore from the new bsp. Calculate a suitable
1029
* loadrs for the new stack and save it in the new pt_regs, where
1030
* ia64_old_stack() can get it.
1031
*/
1032
old_bspstore = (unsigned long *)ar_bspstore;
1033
old_bsp = (unsigned long *)ar_bsp;
1034
slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1035
new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1036
new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1037
regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1038
1039
/* Verify the previous stack state before we change it */
1040
if (user_mode(regs)) {
1041
msg = "occurred in user space";
1042
/* previous_current is guaranteed to be valid when the task was
1043
* in user space, so ...
1044
*/
1045
ia64_mca_modify_comm(previous_current);
1046
goto no_mod;
1047
}
1048
1049
if (r13 != sos->prev_IA64_KR_CURRENT) {
1050
msg = "inconsistent previous current and r13";
1051
goto no_mod;
1052
}
1053
1054
if (!mca_recover_range(ms->pmsa_iip)) {
1055
if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1056
msg = "inconsistent r12 and r13";
1057
goto no_mod;
1058
}
1059
if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1060
msg = "inconsistent ar.bspstore and r13";
1061
goto no_mod;
1062
}
1063
va.p = old_bspstore;
1064
if (va.f.reg < 5) {
1065
msg = "old_bspstore is in the wrong region";
1066
goto no_mod;
1067
}
1068
if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1069
msg = "inconsistent ar.bsp and r13";
1070
goto no_mod;
1071
}
1072
size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1073
if (ar_bspstore + size > r12) {
1074
msg = "no room for blocked state";
1075
goto no_mod;
1076
}
1077
}
1078
1079
ia64_mca_modify_comm(previous_current);
1080
1081
/* Make the original task look blocked. First stack a struct pt_regs,
1082
* describing the state at the time of interrupt. mca_asm.S built a
1083
* partial pt_regs, copy it and fill in the blanks using minstate.
1084
*/
1085
p = (char *)r12 - sizeof(*regs);
1086
old_regs = (struct pt_regs *)p;
1087
memcpy(old_regs, regs, sizeof(*regs));
1088
old_regs->loadrs = loadrs;
1089
old_unat = old_regs->ar_unat;
1090
finish_pt_regs(old_regs, sos, &old_unat);
1091
1092
/* Next stack a struct switch_stack. mca_asm.S built a partial
1093
* switch_stack, copy it and fill in the blanks using pt_regs and
1094
* minstate.
1095
*
1096
* In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1097
* ar.pfs is set to 0.
1098
*
1099
* unwind.c::unw_unwind() does special processing for interrupt frames.
1100
* It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1101
* is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1102
* that this is documented, of course. Set PRED_NON_SYSCALL in the
1103
* switch_stack on the original stack so it will unwind correctly when
1104
* unwind.c reads pt_regs.
1105
*
1106
* thread.ksp is updated to point to the synthesized switch_stack.
1107
*/
1108
p -= sizeof(struct switch_stack);
1109
old_sw = (struct switch_stack *)p;
1110
memcpy(old_sw, sw, sizeof(*sw));
1111
old_sw->caller_unat = old_unat;
1112
old_sw->ar_fpsr = old_regs->ar_fpsr;
1113
copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1114
copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1115
copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1116
copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1117
old_sw->b0 = (u64)ia64_leave_kernel;
1118
old_sw->b1 = ms->pmsa_br1;
1119
old_sw->ar_pfs = 0;
1120
old_sw->ar_unat = old_unat;
1121
old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1122
previous_current->thread.ksp = (u64)p - 16;
1123
1124
/* Finally copy the original stack's registers back to its RBS.
1125
* Registers from ar.bspstore through ar.bsp at the time of the event
1126
* are in the current RBS, copy them back to the original stack. The
1127
* copy must be done register by register because the original bspstore
1128
* and the current one have different alignments, so the saved RNAT
1129
* data occurs at different places.
1130
*
1131
* mca_asm does cover, so the old_bsp already includes all registers at
1132
* the time of MCA/INIT. It also does flushrs, so all registers before
1133
* this function have been written to backing store on the MCA/INIT
1134
* stack.
1135
*/
1136
new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1137
old_rnat = regs->ar_rnat;
1138
while (slots--) {
1139
if (ia64_rse_is_rnat_slot(new_bspstore)) {
1140
new_rnat = ia64_get_rnat(new_bspstore++);
1141
}
1142
if (ia64_rse_is_rnat_slot(old_bspstore)) {
1143
*old_bspstore++ = old_rnat;
1144
old_rnat = 0;
1145
}
1146
nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1147
old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1148
old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1149
*old_bspstore++ = *new_bspstore++;
1150
}
1151
old_sw->ar_bspstore = (unsigned long)old_bspstore;
1152
old_sw->ar_rnat = old_rnat;
1153
1154
sos->prev_task = previous_current;
1155
return previous_current;
1156
1157
no_mod:
1158
mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1159
smp_processor_id(), type, msg);
1160
old_unat = regs->ar_unat;
1161
finish_pt_regs(regs, sos, &old_unat);
1162
return previous_current;
1163
}
1164
1165
/* The monarch/slave interaction is based on monarch_cpu and requires that all
1166
* slaves have entered rendezvous before the monarch leaves. If any cpu has
1167
* not entered rendezvous yet then wait a bit. The assumption is that any
1168
* slave that has not rendezvoused after a reasonable time is never going to do
1169
* so. In this context, slave includes cpus that respond to the MCA rendezvous
1170
* interrupt, as well as cpus that receive the INIT slave event.
1171
*/
1172
1173
static void
1174
ia64_wait_for_slaves(int monarch, const char *type)
1175
{
1176
int c, i , wait;
1177
1178
/*
1179
* wait 5 seconds total for slaves (arbitrary)
1180
*/
1181
for (i = 0; i < 5000; i++) {
1182
wait = 0;
1183
for_each_online_cpu(c) {
1184
if (c == monarch)
1185
continue;
1186
if (ia64_mc_info.imi_rendez_checkin[c]
1187
== IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1188
udelay(1000); /* short wait */
1189
wait = 1;
1190
break;
1191
}
1192
}
1193
if (!wait)
1194
goto all_in;
1195
}
1196
1197
/*
1198
* Maybe slave(s) dead. Print buffered messages immediately.
1199
*/
1200
ia64_mlogbuf_finish(0);
1201
mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1202
for_each_online_cpu(c) {
1203
if (c == monarch)
1204
continue;
1205
if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1206
mprintk(" %d", c);
1207
}
1208
mprintk("\n");
1209
return;
1210
1211
all_in:
1212
mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1213
return;
1214
}
1215
1216
/* mca_insert_tr
1217
*
1218
* Switch rid when TR reload and needed!
1219
* iord: 1: itr, 2: itr;
1220
*
1221
*/
1222
static void mca_insert_tr(u64 iord)
1223
{
1224
1225
int i;
1226
u64 old_rr;
1227
struct ia64_tr_entry *p;
1228
unsigned long psr;
1229
int cpu = smp_processor_id();
1230
1231
if (!ia64_idtrs[cpu])
1232
return;
1233
1234
psr = ia64_clear_ic();
1235
for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1236
p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1237
if (p->pte & 0x1) {
1238
old_rr = ia64_get_rr(p->ifa);
1239
if (old_rr != p->rr) {
1240
ia64_set_rr(p->ifa, p->rr);
1241
ia64_srlz_d();
1242
}
1243
ia64_ptr(iord, p->ifa, p->itir >> 2);
1244
ia64_srlz_i();
1245
if (iord & 0x1) {
1246
ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1247
ia64_srlz_i();
1248
}
1249
if (iord & 0x2) {
1250
ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1251
ia64_srlz_i();
1252
}
1253
if (old_rr != p->rr) {
1254
ia64_set_rr(p->ifa, old_rr);
1255
ia64_srlz_d();
1256
}
1257
}
1258
}
1259
ia64_set_psr(psr);
1260
}
1261
1262
/*
1263
* ia64_mca_handler
1264
*
1265
* This is uncorrectable machine check handler called from OS_MCA
1266
* dispatch code which is in turn called from SAL_CHECK().
1267
* This is the place where the core of OS MCA handling is done.
1268
* Right now the logs are extracted and displayed in a well-defined
1269
* format. This handler code is supposed to be run only on the
1270
* monarch processor. Once the monarch is done with MCA handling
1271
* further MCA logging is enabled by clearing logs.
1272
* Monarch also has the duty of sending wakeup-IPIs to pull the
1273
* slave processors out of rendezvous spinloop.
1274
*
1275
* If multiple processors call into OS_MCA, the first will become
1276
* the monarch. Subsequent cpus will be recorded in the mca_cpu
1277
* bitmask. After the first monarch has processed its MCA, it
1278
* will wake up the next cpu in the mca_cpu bitmask and then go
1279
* into the rendezvous loop. When all processors have serviced
1280
* their MCA, the last monarch frees up the rest of the processors.
1281
*/
1282
void
1283
ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1284
struct ia64_sal_os_state *sos)
1285
{
1286
int recover, cpu = smp_processor_id();
1287
struct task_struct *previous_current;
1288
struct ia64_mca_notify_die nd =
1289
{ .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1290
static atomic_t mca_count;
1291
static cpumask_t mca_cpu;
1292
1293
if (atomic_add_return(1, &mca_count) == 1) {
1294
monarch_cpu = cpu;
1295
sos->monarch = 1;
1296
} else {
1297
cpu_set(cpu, mca_cpu);
1298
sos->monarch = 0;
1299
}
1300
mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1301
"monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1302
1303
previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1304
1305
NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1306
1307
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1308
if (sos->monarch) {
1309
ia64_wait_for_slaves(cpu, "MCA");
1310
1311
/* Wakeup all the processors which are spinning in the
1312
* rendezvous loop. They will leave SAL, then spin in the OS
1313
* with interrupts disabled until this monarch cpu leaves the
1314
* MCA handler. That gets control back to the OS so we can
1315
* backtrace the other cpus, backtrace when spinning in SAL
1316
* does not work.
1317
*/
1318
ia64_mca_wakeup_all();
1319
} else {
1320
while (cpu_isset(cpu, mca_cpu))
1321
cpu_relax(); /* spin until monarch wakes us */
1322
}
1323
1324
NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1325
1326
/* Get the MCA error record and log it */
1327
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1328
1329
/* MCA error recovery */
1330
recover = (ia64_mca_ucmc_extension
1331
&& ia64_mca_ucmc_extension(
1332
IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1333
sos));
1334
1335
if (recover) {
1336
sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1337
rh->severity = sal_log_severity_corrected;
1338
ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1339
sos->os_status = IA64_MCA_CORRECTED;
1340
} else {
1341
/* Dump buffered message to console */
1342
ia64_mlogbuf_finish(1);
1343
}
1344
1345
if (__get_cpu_var(ia64_mca_tr_reload)) {
1346
mca_insert_tr(0x1); /*Reload dynamic itrs*/
1347
mca_insert_tr(0x2); /*Reload dynamic itrs*/
1348
}
1349
1350
NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1351
1352
if (atomic_dec_return(&mca_count) > 0) {
1353
int i;
1354
1355
/* wake up the next monarch cpu,
1356
* and put this cpu in the rendez loop.
1357
*/
1358
for_each_online_cpu(i) {
1359
if (cpu_isset(i, mca_cpu)) {
1360
monarch_cpu = i;
1361
cpu_clear(i, mca_cpu); /* wake next cpu */
1362
while (monarch_cpu != -1)
1363
cpu_relax(); /* spin until last cpu leaves */
1364
set_curr_task(cpu, previous_current);
1365
ia64_mc_info.imi_rendez_checkin[cpu]
1366
= IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1367
return;
1368
}
1369
}
1370
}
1371
set_curr_task(cpu, previous_current);
1372
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1373
monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1374
}
1375
1376
static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1377
static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1378
1379
/*
1380
* ia64_mca_cmc_int_handler
1381
*
1382
* This is corrected machine check interrupt handler.
1383
* Right now the logs are extracted and displayed in a well-defined
1384
* format.
1385
*
1386
* Inputs
1387
* interrupt number
1388
* client data arg ptr
1389
*
1390
* Outputs
1391
* None
1392
*/
1393
static irqreturn_t
1394
ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1395
{
1396
static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1397
static int index;
1398
static DEFINE_SPINLOCK(cmc_history_lock);
1399
1400
IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1401
__func__, cmc_irq, smp_processor_id());
1402
1403
/* SAL spec states this should run w/ interrupts enabled */
1404
local_irq_enable();
1405
1406
spin_lock(&cmc_history_lock);
1407
if (!cmc_polling_enabled) {
1408
int i, count = 1; /* we know 1 happened now */
1409
unsigned long now = jiffies;
1410
1411
for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1412
if (now - cmc_history[i] <= HZ)
1413
count++;
1414
}
1415
1416
IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1417
if (count >= CMC_HISTORY_LENGTH) {
1418
1419
cmc_polling_enabled = 1;
1420
spin_unlock(&cmc_history_lock);
1421
/* If we're being hit with CMC interrupts, we won't
1422
* ever execute the schedule_work() below. Need to
1423
* disable CMC interrupts on this processor now.
1424
*/
1425
ia64_mca_cmc_vector_disable(NULL);
1426
schedule_work(&cmc_disable_work);
1427
1428
/*
1429
* Corrected errors will still be corrected, but
1430
* make sure there's a log somewhere that indicates
1431
* something is generating more than we can handle.
1432
*/
1433
printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1434
1435
mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1436
1437
/* lock already released, get out now */
1438
goto out;
1439
} else {
1440
cmc_history[index++] = now;
1441
if (index == CMC_HISTORY_LENGTH)
1442
index = 0;
1443
}
1444
}
1445
spin_unlock(&cmc_history_lock);
1446
out:
1447
/* Get the CMC error record and log it */
1448
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1449
1450
return IRQ_HANDLED;
1451
}
1452
1453
/*
1454
* ia64_mca_cmc_int_caller
1455
*
1456
* Triggered by sw interrupt from CMC polling routine. Calls
1457
* real interrupt handler and either triggers a sw interrupt
1458
* on the next cpu or does cleanup at the end.
1459
*
1460
* Inputs
1461
* interrupt number
1462
* client data arg ptr
1463
* Outputs
1464
* handled
1465
*/
1466
static irqreturn_t
1467
ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1468
{
1469
static int start_count = -1;
1470
unsigned int cpuid;
1471
1472
cpuid = smp_processor_id();
1473
1474
/* If first cpu, update count */
1475
if (start_count == -1)
1476
start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1477
1478
ia64_mca_cmc_int_handler(cmc_irq, arg);
1479
1480
cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1481
1482
if (cpuid < nr_cpu_ids) {
1483
platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1484
} else {
1485
/* If no log record, switch out of polling mode */
1486
if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1487
1488
printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1489
schedule_work(&cmc_enable_work);
1490
cmc_polling_enabled = 0;
1491
1492
} else {
1493
1494
mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1495
}
1496
1497
start_count = -1;
1498
}
1499
1500
return IRQ_HANDLED;
1501
}
1502
1503
/*
1504
* ia64_mca_cmc_poll
1505
*
1506
* Poll for Corrected Machine Checks (CMCs)
1507
*
1508
* Inputs : dummy(unused)
1509
* Outputs : None
1510
*
1511
*/
1512
static void
1513
ia64_mca_cmc_poll (unsigned long dummy)
1514
{
1515
/* Trigger a CMC interrupt cascade */
1516
platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1517
}
1518
1519
/*
1520
* ia64_mca_cpe_int_caller
1521
*
1522
* Triggered by sw interrupt from CPE polling routine. Calls
1523
* real interrupt handler and either triggers a sw interrupt
1524
* on the next cpu or does cleanup at the end.
1525
*
1526
* Inputs
1527
* interrupt number
1528
* client data arg ptr
1529
* Outputs
1530
* handled
1531
*/
1532
#ifdef CONFIG_ACPI
1533
1534
static irqreturn_t
1535
ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1536
{
1537
static int start_count = -1;
1538
static int poll_time = MIN_CPE_POLL_INTERVAL;
1539
unsigned int cpuid;
1540
1541
cpuid = smp_processor_id();
1542
1543
/* If first cpu, update count */
1544
if (start_count == -1)
1545
start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1546
1547
ia64_mca_cpe_int_handler(cpe_irq, arg);
1548
1549
cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1550
1551
if (cpuid < NR_CPUS) {
1552
platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1553
} else {
1554
/*
1555
* If a log was recorded, increase our polling frequency,
1556
* otherwise, backoff or return to interrupt mode.
1557
*/
1558
if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1559
poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1560
} else if (cpe_vector < 0) {
1561
poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1562
} else {
1563
poll_time = MIN_CPE_POLL_INTERVAL;
1564
1565
printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1566
enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1567
cpe_poll_enabled = 0;
1568
}
1569
1570
if (cpe_poll_enabled)
1571
mod_timer(&cpe_poll_timer, jiffies + poll_time);
1572
start_count = -1;
1573
}
1574
1575
return IRQ_HANDLED;
1576
}
1577
1578
/*
1579
* ia64_mca_cpe_poll
1580
*
1581
* Poll for Corrected Platform Errors (CPEs), trigger interrupt
1582
* on first cpu, from there it will trickle through all the cpus.
1583
*
1584
* Inputs : dummy(unused)
1585
* Outputs : None
1586
*
1587
*/
1588
static void
1589
ia64_mca_cpe_poll (unsigned long dummy)
1590
{
1591
/* Trigger a CPE interrupt cascade */
1592
platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1593
}
1594
1595
#endif /* CONFIG_ACPI */
1596
1597
static int
1598
default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1599
{
1600
int c;
1601
struct task_struct *g, *t;
1602
if (val != DIE_INIT_MONARCH_PROCESS)
1603
return NOTIFY_DONE;
1604
#ifdef CONFIG_KEXEC
1605
if (atomic_read(&kdump_in_progress))
1606
return NOTIFY_DONE;
1607
#endif
1608
1609
/*
1610
* FIXME: mlogbuf will brim over with INIT stack dumps.
1611
* To enable show_stack from INIT, we use oops_in_progress which should
1612
* be used in real oops. This would cause something wrong after INIT.
1613
*/
1614
BREAK_LOGLEVEL(console_loglevel);
1615
ia64_mlogbuf_dump_from_init();
1616
1617
printk(KERN_ERR "Processes interrupted by INIT -");
1618
for_each_online_cpu(c) {
1619
struct ia64_sal_os_state *s;
1620
t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1621
s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1622
g = s->prev_task;
1623
if (g) {
1624
if (g->pid)
1625
printk(" %d", g->pid);
1626
else
1627
printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1628
}
1629
}
1630
printk("\n\n");
1631
if (read_trylock(&tasklist_lock)) {
1632
do_each_thread (g, t) {
1633
printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1634
show_stack(t, NULL);
1635
} while_each_thread (g, t);
1636
read_unlock(&tasklist_lock);
1637
}
1638
/* FIXME: This will not restore zapped printk locks. */
1639
RESTORE_LOGLEVEL(console_loglevel);
1640
return NOTIFY_DONE;
1641
}
1642
1643
/*
1644
* C portion of the OS INIT handler
1645
*
1646
* Called from ia64_os_init_dispatch
1647
*
1648
* Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1649
* this event. This code is used for both monarch and slave INIT events, see
1650
* sos->monarch.
1651
*
1652
* All INIT events switch to the INIT stack and change the previous process to
1653
* blocked status. If one of the INIT events is the monarch then we are
1654
* probably processing the nmi button/command. Use the monarch cpu to dump all
1655
* the processes. The slave INIT events all spin until the monarch cpu
1656
* returns. We can also get INIT slave events for MCA, in which case the MCA
1657
* process is the monarch.
1658
*/
1659
1660
void
1661
ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1662
struct ia64_sal_os_state *sos)
1663
{
1664
static atomic_t slaves;
1665
static atomic_t monarchs;
1666
struct task_struct *previous_current;
1667
int cpu = smp_processor_id();
1668
struct ia64_mca_notify_die nd =
1669
{ .sos = sos, .monarch_cpu = &monarch_cpu };
1670
1671
NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1672
1673
mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1674
sos->proc_state_param, cpu, sos->monarch);
1675
salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1676
1677
previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1678
sos->os_status = IA64_INIT_RESUME;
1679
1680
/* FIXME: Workaround for broken proms that drive all INIT events as
1681
* slaves. The last slave that enters is promoted to be a monarch.
1682
* Remove this code in September 2006, that gives platforms a year to
1683
* fix their proms and get their customers updated.
1684
*/
1685
if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1686
mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1687
__func__, cpu);
1688
atomic_dec(&slaves);
1689
sos->monarch = 1;
1690
}
1691
1692
/* FIXME: Workaround for broken proms that drive all INIT events as
1693
* monarchs. Second and subsequent monarchs are demoted to slaves.
1694
* Remove this code in September 2006, that gives platforms a year to
1695
* fix their proms and get their customers updated.
1696
*/
1697
if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1698
mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1699
__func__, cpu);
1700
atomic_dec(&monarchs);
1701
sos->monarch = 0;
1702
}
1703
1704
if (!sos->monarch) {
1705
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1706
1707
#ifdef CONFIG_KEXEC
1708
while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1709
udelay(1000);
1710
#else
1711
while (monarch_cpu == -1)
1712
cpu_relax(); /* spin until monarch enters */
1713
#endif
1714
1715
NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1716
NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1717
1718
#ifdef CONFIG_KEXEC
1719
while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1720
udelay(1000);
1721
#else
1722
while (monarch_cpu != -1)
1723
cpu_relax(); /* spin until monarch leaves */
1724
#endif
1725
1726
NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1727
1728
mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1729
set_curr_task(cpu, previous_current);
1730
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1731
atomic_dec(&slaves);
1732
return;
1733
}
1734
1735
monarch_cpu = cpu;
1736
NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1737
1738
/*
1739
* Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1740
* generated via the BMC's command-line interface, but since the console is on the
1741
* same serial line, the user will need some time to switch out of the BMC before
1742
* the dump begins.
1743
*/
1744
mprintk("Delaying for 5 seconds...\n");
1745
udelay(5*1000000);
1746
ia64_wait_for_slaves(cpu, "INIT");
1747
/* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1748
* to default_monarch_init_process() above and just print all the
1749
* tasks.
1750
*/
1751
NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1752
NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1753
1754
mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1755
atomic_dec(&monarchs);
1756
set_curr_task(cpu, previous_current);
1757
monarch_cpu = -1;
1758
return;
1759
}
1760
1761
static int __init
1762
ia64_mca_disable_cpe_polling(char *str)
1763
{
1764
cpe_poll_enabled = 0;
1765
return 1;
1766
}
1767
1768
__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1769
1770
static struct irqaction cmci_irqaction = {
1771
.handler = ia64_mca_cmc_int_handler,
1772
.flags = IRQF_DISABLED,
1773
.name = "cmc_hndlr"
1774
};
1775
1776
static struct irqaction cmcp_irqaction = {
1777
.handler = ia64_mca_cmc_int_caller,
1778
.flags = IRQF_DISABLED,
1779
.name = "cmc_poll"
1780
};
1781
1782
static struct irqaction mca_rdzv_irqaction = {
1783
.handler = ia64_mca_rendez_int_handler,
1784
.flags = IRQF_DISABLED,
1785
.name = "mca_rdzv"
1786
};
1787
1788
static struct irqaction mca_wkup_irqaction = {
1789
.handler = ia64_mca_wakeup_int_handler,
1790
.flags = IRQF_DISABLED,
1791
.name = "mca_wkup"
1792
};
1793
1794
#ifdef CONFIG_ACPI
1795
static struct irqaction mca_cpe_irqaction = {
1796
.handler = ia64_mca_cpe_int_handler,
1797
.flags = IRQF_DISABLED,
1798
.name = "cpe_hndlr"
1799
};
1800
1801
static struct irqaction mca_cpep_irqaction = {
1802
.handler = ia64_mca_cpe_int_caller,
1803
.flags = IRQF_DISABLED,
1804
.name = "cpe_poll"
1805
};
1806
#endif /* CONFIG_ACPI */
1807
1808
/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1809
* these stacks can never sleep, they cannot return from the kernel to user
1810
* space, they do not appear in a normal ps listing. So there is no need to
1811
* format most of the fields.
1812
*/
1813
1814
static void __cpuinit
1815
format_mca_init_stack(void *mca_data, unsigned long offset,
1816
const char *type, int cpu)
1817
{
1818
struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1819
struct thread_info *ti;
1820
memset(p, 0, KERNEL_STACK_SIZE);
1821
ti = task_thread_info(p);
1822
ti->flags = _TIF_MCA_INIT;
1823
ti->preempt_count = 1;
1824
ti->task = p;
1825
ti->cpu = cpu;
1826
p->stack = ti;
1827
p->state = TASK_UNINTERRUPTIBLE;
1828
cpu_set(cpu, p->cpus_allowed);
1829
INIT_LIST_HEAD(&p->tasks);
1830
p->parent = p->real_parent = p->group_leader = p;
1831
INIT_LIST_HEAD(&p->children);
1832
INIT_LIST_HEAD(&p->sibling);
1833
strncpy(p->comm, type, sizeof(p->comm)-1);
1834
}
1835
1836
/* Caller prevents this from being called after init */
1837
static void * __init_refok mca_bootmem(void)
1838
{
1839
return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1840
KERNEL_STACK_SIZE, 0);
1841
}
1842
1843
/* Do per-CPU MCA-related initialization. */
1844
void __cpuinit
1845
ia64_mca_cpu_init(void *cpu_data)
1846
{
1847
void *pal_vaddr;
1848
void *data;
1849
long sz = sizeof(struct ia64_mca_cpu);
1850
int cpu = smp_processor_id();
1851
static int first_time = 1;
1852
1853
/*
1854
* Structure will already be allocated if cpu has been online,
1855
* then offlined.
1856
*/
1857
if (__per_cpu_mca[cpu]) {
1858
data = __va(__per_cpu_mca[cpu]);
1859
} else {
1860
if (first_time) {
1861
data = mca_bootmem();
1862
first_time = 0;
1863
} else
1864
data = (void *)__get_free_pages(GFP_KERNEL,
1865
get_order(sz));
1866
if (!data)
1867
panic("Could not allocate MCA memory for cpu %d\n",
1868
cpu);
1869
}
1870
format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1871
"MCA", cpu);
1872
format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1873
"INIT", cpu);
1874
__get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1875
1876
/*
1877
* Stash away a copy of the PTE needed to map the per-CPU page.
1878
* We may need it during MCA recovery.
1879
*/
1880
__get_cpu_var(ia64_mca_per_cpu_pte) =
1881
pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1882
1883
/*
1884
* Also, stash away a copy of the PAL address and the PTE
1885
* needed to map it.
1886
*/
1887
pal_vaddr = efi_get_pal_addr();
1888
if (!pal_vaddr)
1889
return;
1890
__get_cpu_var(ia64_mca_pal_base) =
1891
GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1892
__get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1893
PAGE_KERNEL));
1894
}
1895
1896
static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1897
{
1898
unsigned long flags;
1899
1900
local_irq_save(flags);
1901
if (!cmc_polling_enabled)
1902
ia64_mca_cmc_vector_enable(NULL);
1903
local_irq_restore(flags);
1904
}
1905
1906
static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1907
unsigned long action,
1908
void *hcpu)
1909
{
1910
int hotcpu = (unsigned long) hcpu;
1911
1912
switch (action) {
1913
case CPU_ONLINE:
1914
case CPU_ONLINE_FROZEN:
1915
smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1916
NULL, 0);
1917
break;
1918
}
1919
return NOTIFY_OK;
1920
}
1921
1922
static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1923
.notifier_call = mca_cpu_callback
1924
};
1925
1926
/*
1927
* ia64_mca_init
1928
*
1929
* Do all the system level mca specific initialization.
1930
*
1931
* 1. Register spinloop and wakeup request interrupt vectors
1932
*
1933
* 2. Register OS_MCA handler entry point
1934
*
1935
* 3. Register OS_INIT handler entry point
1936
*
1937
* 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1938
*
1939
* Note that this initialization is done very early before some kernel
1940
* services are available.
1941
*
1942
* Inputs : None
1943
*
1944
* Outputs : None
1945
*/
1946
void __init
1947
ia64_mca_init(void)
1948
{
1949
ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1950
ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1951
ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1952
int i;
1953
long rc;
1954
struct ia64_sal_retval isrv;
1955
unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1956
static struct notifier_block default_init_monarch_nb = {
1957
.notifier_call = default_monarch_init_process,
1958
.priority = 0/* we need to notified last */
1959
};
1960
1961
IA64_MCA_DEBUG("%s: begin\n", __func__);
1962
1963
/* Clear the Rendez checkin flag for all cpus */
1964
for(i = 0 ; i < NR_CPUS; i++)
1965
ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1966
1967
/*
1968
* Register the rendezvous spinloop and wakeup mechanism with SAL
1969
*/
1970
1971
/* Register the rendezvous interrupt vector with SAL */
1972
while (1) {
1973
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1974
SAL_MC_PARAM_MECHANISM_INT,
1975
IA64_MCA_RENDEZ_VECTOR,
1976
timeout,
1977
SAL_MC_PARAM_RZ_ALWAYS);
1978
rc = isrv.status;
1979
if (rc == 0)
1980
break;
1981
if (rc == -2) {
1982
printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1983
"%ld to %ld milliseconds\n", timeout, isrv.v0);
1984
timeout = isrv.v0;
1985
NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1986
continue;
1987
}
1988
printk(KERN_ERR "Failed to register rendezvous interrupt "
1989
"with SAL (status %ld)\n", rc);
1990
return;
1991
}
1992
1993
/* Register the wakeup interrupt vector with SAL */
1994
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1995
SAL_MC_PARAM_MECHANISM_INT,
1996
IA64_MCA_WAKEUP_VECTOR,
1997
0, 0);
1998
rc = isrv.status;
1999
if (rc) {
2000
printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
2001
"(status %ld)\n", rc);
2002
return;
2003
}
2004
2005
IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
2006
2007
ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
2008
/*
2009
* XXX - disable SAL checksum by setting size to 0; should be
2010
* ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
2011
*/
2012
ia64_mc_info.imi_mca_handler_size = 0;
2013
2014
/* Register the os mca handler with SAL */
2015
if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
2016
ia64_mc_info.imi_mca_handler,
2017
ia64_tpa(mca_hldlr_ptr->gp),
2018
ia64_mc_info.imi_mca_handler_size,
2019
0, 0, 0)))
2020
{
2021
printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2022
"(status %ld)\n", rc);
2023
return;
2024
}
2025
2026
IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
2027
ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2028
2029
/*
2030
* XXX - disable SAL checksum by setting size to 0, should be
2031
* size of the actual init handler in mca_asm.S.
2032
*/
2033
ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
2034
ia64_mc_info.imi_monarch_init_handler_size = 0;
2035
ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
2036
ia64_mc_info.imi_slave_init_handler_size = 0;
2037
2038
IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2039
ia64_mc_info.imi_monarch_init_handler);
2040
2041
/* Register the os init handler with SAL */
2042
if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2043
ia64_mc_info.imi_monarch_init_handler,
2044
ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2045
ia64_mc_info.imi_monarch_init_handler_size,
2046
ia64_mc_info.imi_slave_init_handler,
2047
ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2048
ia64_mc_info.imi_slave_init_handler_size)))
2049
{
2050
printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2051
"(status %ld)\n", rc);
2052
return;
2053
}
2054
if (register_die_notifier(&default_init_monarch_nb)) {
2055
printk(KERN_ERR "Failed to register default monarch INIT process\n");
2056
return;
2057
}
2058
2059
IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2060
2061
/* Initialize the areas set aside by the OS to buffer the
2062
* platform/processor error states for MCA/INIT/CMC
2063
* handling.
2064
*/
2065
ia64_log_init(SAL_INFO_TYPE_MCA);
2066
ia64_log_init(SAL_INFO_TYPE_INIT);
2067
ia64_log_init(SAL_INFO_TYPE_CMC);
2068
ia64_log_init(SAL_INFO_TYPE_CPE);
2069
2070
mca_init = 1;
2071
printk(KERN_INFO "MCA related initialization done\n");
2072
}
2073
2074
/*
2075
* ia64_mca_late_init
2076
*
2077
* Opportunity to setup things that require initialization later
2078
* than ia64_mca_init. Setup a timer to poll for CPEs if the
2079
* platform doesn't support an interrupt driven mechanism.
2080
*
2081
* Inputs : None
2082
* Outputs : Status
2083
*/
2084
static int __init
2085
ia64_mca_late_init(void)
2086
{
2087
if (!mca_init)
2088
return 0;
2089
2090
/*
2091
* Configure the CMCI/P vector and handler. Interrupts for CMC are
2092
* per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2093
*/
2094
register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2095
register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2096
ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2097
2098
/* Setup the MCA rendezvous interrupt vector */
2099
register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2100
2101
/* Setup the MCA wakeup interrupt vector */
2102
register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2103
2104
#ifdef CONFIG_ACPI
2105
/* Setup the CPEI/P handler */
2106
register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2107
#endif
2108
2109
register_hotcpu_notifier(&mca_cpu_notifier);
2110
2111
/* Setup the CMCI/P vector and handler */
2112
init_timer(&cmc_poll_timer);
2113
cmc_poll_timer.function = ia64_mca_cmc_poll;
2114
2115
/* Unmask/enable the vector */
2116
cmc_polling_enabled = 0;
2117
schedule_work(&cmc_enable_work);
2118
2119
IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2120
2121
#ifdef CONFIG_ACPI
2122
/* Setup the CPEI/P vector and handler */
2123
cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2124
init_timer(&cpe_poll_timer);
2125
cpe_poll_timer.function = ia64_mca_cpe_poll;
2126
2127
{
2128
unsigned int irq;
2129
2130
if (cpe_vector >= 0) {
2131
/* If platform supports CPEI, enable the irq. */
2132
irq = local_vector_to_irq(cpe_vector);
2133
if (irq > 0) {
2134
cpe_poll_enabled = 0;
2135
irq_set_status_flags(irq, IRQ_PER_CPU);
2136
setup_irq(irq, &mca_cpe_irqaction);
2137
ia64_cpe_irq = irq;
2138
ia64_mca_register_cpev(cpe_vector);
2139
IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2140
__func__);
2141
return 0;
2142
}
2143
printk(KERN_ERR "%s: Failed to find irq for CPE "
2144
"interrupt handler, vector %d\n",
2145
__func__, cpe_vector);
2146
}
2147
/* If platform doesn't support CPEI, get the timer going. */
2148
if (cpe_poll_enabled) {
2149
ia64_mca_cpe_poll(0UL);
2150
IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2151
}
2152
}
2153
#endif
2154
2155
return 0;
2156
}
2157
2158
device_initcall(ia64_mca_late_init);
2159
2160